OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 5 — Mar. 1, 2010
  • pp: 4637–4643

Propagation of a partially coherent Lorentz-Gauss beam through a paraxial ABCD optical system

Guoquan Zhou  »View Author Affiliations


Optics Express, Vol. 18, Issue 5, pp. 4637-4643 (2010)
http://dx.doi.org/10.1364/OE.18.004637


View Full Text Article

Enhanced HTML    Acrobat PDF (197 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Based on the generalized Huygens-Fresnel integral and the Hermite-Gaussian expansion of a Lorentz distribution, analytical expressions for the mutual coherence function, the effective beam size, and the spatial complex degree of coherence of a partially coherent Lorentz-Gauss beam through a paraxial and real ABCD optical system are derived, respectively. As a numerical example, the focusing of a partially coherent Lorentz-Gauss beam is considered. The normalized intensity distribution, the effective beam size, and the spatial complex degree of coherence for the focused partially coherent Lorentz-Gauss beam are numerically demonstrated in the focal plane. The influence of the spatial coherence length on the normalized intensity distribution, the effective beam size, and the spatial complex degree of coherence is mainly discussed.

© 2010 OSA

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(350.5500) Other areas of optics : Propagation

ToC Category:
Coherence and Statistical Optics

History
Original Manuscript: November 20, 2009
Revised Manuscript: January 14, 2010
Manuscript Accepted: February 5, 2010
Published: February 22, 2010

Citation
Guoquan Zhou, "Propagation of a partially coherent Lorentz-Gauss beam through a paraxial ABCD optical system," Opt. Express 18, 4637-4643 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-5-4637


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. P. Dumke, “The angular beam divergence in double-heterojunction lasers with very thin active regions,” IEEE J. Quantum Electron. 11(7), 400–402 (1975). [CrossRef]
  2. A. Naqwi and F. Durst, “Focus of diode laser beams: a simple mathematical model,” Appl. Opt. 29(12), 1780–1785 (1990). [CrossRef] [PubMed]
  3. J. Yang, T. Chen, G. Ding, and X. Yuan, “Focusing of diode laser beams: a partially coherent Lorentz model,” Proc. SPIE 6824, 68240A (2008). [CrossRef]
  4. O. E. Gawhary and S. Severini, “Lorentz beams and symmetry properties in paraxial optics,” J. Opt. A, Pure Appl. Opt. 8(5), 409–414 (2006). [CrossRef]
  5. O. Elgawhary and S. Severini, “Lorentz beams as a basis for a new class of rectangular symmetric optical fields,” Opt. Commun. 269(2), 274–284 (2007). [CrossRef]
  6. A. Torre, W. A. B. Evans, O. E. Gawhary, and S. Severini, “Relativistic Hermite polynomials and Lorentz beams,” J. Opt. A, Pure Appl. Opt. 10(11), 115007 (2008). [CrossRef]
  7. G. Zhou, J. Zheng, and Y. Xu, “Investigation in the far field characteristics of Lorentz beam from the vectorial structure,” J. Mod. Opt. 55(6), 993–1002 (2008). [CrossRef]
  8. G. Zhou, “Analytical vectorial structure of a Lorentz-Gauss beam in the far field,” Appl. Phys. B 93(4), 891–899 (2008). [CrossRef]
  9. G. Zhou, “Propagation of vectorial Lorentz beam beyond the paraxial approximation,” J. Mod. Opt. 55(21), 3573–3577 (2008). [CrossRef]
  10. G. Zhou, “Focal shift of focused truncated Lorentz-Gauss beam,” J. Opt. Soc. Am. A 25(10), 2594–2599 (2008). [CrossRef]
  11. G. Zhou, “Nonparaxial propagation of a Lorentz-Gauss beam,” J. Opt. Soc. Am. B 26(1), 141–147 (2009). [CrossRef]
  12. G. Zhou, “Fractional Fourier transform of Lorentz-Gauss beams,” J. Opt. Soc. Am. A 26(2), 350–355 (2009). [CrossRef]
  13. G. Zhou, “The beam propagation factors and the kurtosis parameters of a Lorentz beam,” Opt. Laser Technol. 41(8), 953–955 (2009). [CrossRef]
  14. G. Zhou, “Beam propagation factors of a Lorentz-Gauss beam,” Appl. Phys. B 96(1), 149–153 (2009). [CrossRef]
  15. L. Mandel, and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, UK, 1995).
  16. P. P. Schmidt, “A method for the convolution of lineshapes which involve the Lorentz distribution,” J. Phys. B 9(13), 2331–2339 (1976). [CrossRef]
  17. I. S. Gradshteyn, and I. M. Ryzhik, Table of integrals, series, and products (Academic Press, New York, 1980).
  18. Y. Yuan, Y. Cai, J. Qu, H. T. Eyyuboğlu, and Y. Baykal, “Average intensity and spreading of an elegant Hermite-Gaussian beam in turbulent atmosphere,” Opt. Express 17(13), 11130–11139 (2009). [CrossRef] [PubMed]
  19. A. T. Friberg and J. Turunen, “Imaging of Gaussian Schell-model sources,” J. Opt. Soc. Am. A 5(5), 713–720 (1988). [CrossRef]
  20. M. Born, and E. Wolf, Principles of Optics 7th ed. (Cambridge University Press, Cambridge, UK, 1999).
  21. G. Zhou, “Generalized M2 factors of truncated partially coherent Lorentz and Lorentz-Gauss beams,” J. Opt. 12(1), 015701 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited