OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 5 — Mar. 1, 2010
  • pp: 4748–4757

Generation of an optical frequency comb with a Gaussian spectrum using a linear time-to-space mapping system

Shintaro Hisatake, Keiji Tada, and Tadao Nagatsuma  »View Author Affiliations

Optics Express, Vol. 18, Issue 5, pp. 4748-4757 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (770 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate the generation of an optical frequency comb (OFC) with a Gaussian spectrum using a continuous-wave (CW) laser, based on spatial convolution of a slit and a periodically moving optical beam spot in a linear time-to-space mapping system. A CW optical beam is linearly mapped to a spatial signal using two sinusoidal electro-optic (EO) deflections and an OFC is extracted by inserting a narrow spatial slit in the Fourier-transform plane of a second EO deflector (EOD). The spectral shape of the OFC corresponds to the spatial beam profile in the near-field region of the second EOD, which can be manipulated by a spatial filter without spectral dispersers. In a proof-of-concept experiment, a 16.25-GHz-spaced, 240-GHz-wide Gaussian-envelope OFC (corresponding to 1.8 ps Gaussian pulse generation) was demonstrated.

© 2010 Optical Society of America

OCIS Codes
(070.1170) Fourier optics and signal processing : Analog optical signal processing
(230.2090) Optical devices : Electro-optical devices
(320.5540) Ultrafast optics : Pulse shaping
(070.7145) Fourier optics and signal processing : Ultrafast processing

ToC Category:
Ultrafast Optics

Original Manuscript: December 21, 2009
Revised Manuscript: January 30, 2010
Manuscript Accepted: February 7, 2010
Published: February 22, 2010

Shintaro Hisatake, Keiji Tada, and Tadao Nagatsuma, "Generation of an optical frequency comb with a Gaussian spectrum using a linear time-to-space mapping system," Opt. Express 18, 4748-4757 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Hisatake, Y. Nakase, K. Shibuya, and T. Kobayashi, "Generation of flat power-envelope terahertz-wide modulation sidebands from a continuous-wave laser based on an external electro-optic phase modulator," Opt. Lett. 30,777-779 (2005). [CrossRef] [PubMed]
  2. I. L. Gheorma and G. K. Gopalakrishnan, "Flat frequency comb generation with an integrated dual-parallel modulator," IEEE Photon. Technol. Lett. 19,1011-1013 (2007). [CrossRef]
  3. T. Sakamoto, T. Kawanishi, and M. Izutsu, "Widely wavelength-tunable ultra-flat frequency comb generation using conventional dual-drive Mach-Zehnder modulator," Electron. Lett. 43,1039-1040 (2007). [CrossRef]
  4. V. Torres-Company, J. Lancis, and P. Andres, "Lossless equalization of frequency combs," Opt. Lett. 33,1822-1824 (2008). [CrossRef] [PubMed]
  5. Z. Jiang, C.-B. Huang, D. E. Leaird, and A. W. Weiner, "Optical arbitrary waveform processing of more than 100 spectral comb lines," Nature Photon. 1,463-467 (2007). [CrossRef]
  6. Y. Takita, F. Futami, M Doi, and S. Watanabe, "Highly stable ultra-short pulse generation by filtering out flat optical frequency components," Conference on Laser and Electro-Optics (CLEOf04) (Optical Society of America, 2004), paper CTuN1 (2004).
  7. T. Sakamoto, T. Kawanishi, and M. Tsuchiya, "10 GHz, 2.4 ps pulse generation using a single-stage dual-drive Mach-Zehnder modulator," Opt. Lett. 33,890-892 (2008). [CrossRef] [PubMed]
  8. P. Petropoulos, M. Ibsen, A. D. Ellis, and D. J. Richardson, "Rectangular pulse generation based on pulse reshaping using a superstructured fiber Bragg grating," J. Lightwave Technol. 19,746-752 (2001). [CrossRef]
  9. S. Hisatake, K. Shibuya, and T. Kobayashi, "Ultrafast traveling-wave electro-optic deflector using domainengineered LiTaO3 crystal," Appl. Phys. Lett. 87,081101 (2005). [CrossRef]
  10. S. Hisatake, K. Tada, and T. Nagatsuma, "Linear time-to-space mapping system using double electrooptic beam deflectors," Opt. Express 16, 21753-21761 (2008). [CrossRef] [PubMed]
  11. S. Kawanishi, H. Takara, K. Uchiyama, I. Shake, and K. Mori, "3 Tbit/s (160 Gbit/s 19 channel) optical TDM and WDM transmission experiment," Electron. Lett. 35,826-827 (1999). [CrossRef]
  12. T. Kobayashi, H. Ideno, and T. Sueta, "Generation of arbitrarily shaped optical pulses in the subnanosecond to picosecond range using a fast electrooptic deflector," IEEE J. Quantum Electron. 16,132-136 (1980). [CrossRef]
  13. T. Kobayashi, T. Sueta, Y. Cho, and Y. Matsuo, "High-repetition-rate optical pulse generator using a Fabry-Perot electro-optic modulator," Appl. Phys. Lett. 21,341-343 (1972). [CrossRef]
  14. T. Kobayashi, A. Morimoto, B. Y. Lee, and T. Sueta, "A new method of ultrashort pulse generation: Modified Fabry-Perot electrooptic modulator," in Ultrafast Phenomena VII, ed. by C. Harris et al., (Springer Verlag, Berlin 1991) pp. 41-44.
  15. K. Imai, M. Kourogi, and M. Ohtsu, "30-THz span optical frequency comb generation by self-phase modulation in an optical fiber," IEEE J. Quantum Electron. 34,54-60 (1998). [CrossRef]
  16. M. Shen, X. Xu, and K. K. Y. Wong, "160-Gb/s OTDM de-multiplexing based on a pulsed-pump parametric wavelength exchange," Conference on Laser and Electro-Optics (CLEOf09) (Optical Society of America, 2009), paper JThE77 (2009).
  17. X. Wu, A. Bogoni, S. R. Nuccio, O. F. Yilmaz, and A. E. Willner, "320-Gbit/s optical time multiplexing of two 160-Gbit/s channels using supercontinuum generation to achieve high-speed WDM-to-TDM," Conference on Laser and Electro-Optics (CLEOf09) (Optical Society of America, 2009), paper CMZ7 (2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited