OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 5 — Mar. 1, 2010
  • pp: 5168–5178

Design of light-trapping microscale-textured surfaces for efficient organic solar cells

Kanwar S. Nalwa and Sumit Chaudhary  »View Author Affiliations

Optics Express, Vol. 18, Issue 5, pp. 5168-5178 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (644 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Organic photovoltaic (OPV) cells suffer from low charge carrier mobilities of polymers, which renders it important to achieve complete optical absorption in active layers thinner than optical absorption length. Active layers conformally deposited on light-trapping, microscale textured, grating-type surfaces is one possible approach to achieve this objective. In this report, we analyze the design of such grating-type OPV cells using finite element method simulations. The energy dissipation of electromagnetic field in the active layer is studied as a function of active layer thickness, and pitch and height of the underlying textures. The superiority of textured geometry in terms of light trapping is clearly demonstrated by the simulation results. We observe 40% increase in photonic absorption in 150 nm thick active layer, for textures with 2 μm pitch and 1.5 μm height.

© 2010 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(050.2770) Diffraction and gratings : Gratings
(160.0160) Materials : Materials
(160.4890) Materials : Organic materials
(160.5140) Materials : Photoconductive materials
(250.0250) Optoelectronics : Optoelectronics
(250.2080) Optoelectronics : Polymer active devices

ToC Category:
Solar Energy

Original Manuscript: December 14, 2009
Revised Manuscript: February 17, 2010
Manuscript Accepted: February 17, 2010
Published: February 25, 2010

Virtual Issues
Focus Issue: Solar Concentrators (2010) Optics Express

Kanwar S. Nalwa and Sumit Chaudhary, "Design of light-trapping microscale-textured surfaces for efficient organic solar cells," Opt. Express 18, 5168-5178 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. W. Tang, “Two-layer organic photovoltaic cell,” Appl. Phys. Lett. 48(2), 183–185 (1986). [CrossRef]
  2. P. Peumans, A. Yakimov, and S. Forrest, “Small molecular weight organic thin-film photodetectors and solar cells,” J. Appl. Phys. 93(7), 3693–3723 (2003). [CrossRef]
  3. N. S. Sariciftci, D. Braun, C. Zhang, V. I. Srdanov, A. J. Heeger, G. Stucky, and F. Wudl, “Semiconducting polymer-buckminsterfullerene heterojunctions: diodes, photodiodes, and photovoltaic cells,” Appl. Phys. Lett. 62(6), 585–587 (1993). [CrossRef]
  4. G. Yu and A. J. Heeger, “Charge separation and photovoltaic conversion in polymer composites with internal donor/acceptor heterojunctions,” J. Appl. Phys. 78(7), 4510–4515 (1995). [CrossRef]
  5. J. J. M. Halls, C. A. Walsh, N. C. Greenham, E. A. Marseglia, R. H. Friend, S. C. Moratti, and A. B. Holmes, “Efficient photodiodes from interpenetrating polymer networks,” Nature 376(6540), 498–500 (1995). [CrossRef]
  6. G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, “Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions,” Science 270(5243), 1789–1791 (1995). [CrossRef]
  7. W. L. Ma, C. Y. Yang, X. Gong, K. Lee, and A. J. Heeger, “Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology,” Adv. Funct. Mater. 15(10), 1617–1622 (2005). [CrossRef]
  8. G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater. 4(11), 864–868 (2005). [CrossRef]
  9. R. J. Kline, M. D. McGehee, E. N. Kadnikova, J. Liu, and J. M. J. Fréchet, “Controlling the field-effect mobility of regioregular polythiophene by changing the molecular weight,” Adv. Mater. 15(18), 1519–1522 (2003). [CrossRef]
  10. M. Agrawal and P. Peumans, “Broadband optical absorption enhancement through coherent light trapping in thin-film photovoltaic cells,” Opt. Express 16(8), 5385–5396 (2008). [CrossRef] [PubMed]
  11. P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62(1), 243–249 (1987). [CrossRef]
  12. C. Heine and R. H. Morf, “Submicrometer gratings for solar energy applications,” Appl. Opt. 34(14), 2476–2482 (1995). [CrossRef] [PubMed]
  13. L. Stolz Roman, O. Inganäs, T. Granlund, T. Nyberg, M. Svensson, M. R. Andersson, and J. C. Hummelen, “Trapping light in polymer photodiodes with soft embossed gratings,” Adv. Mater. 12(3), 189–195 (2000). [CrossRef]
  14. M. Niggemann, M. Glatthaar, A. Gombert, A. Hinsch, and V. Wittwer, “Diffraction gratings and buried nano-electrodes - architectures for organic solar cells,” Thin Solid Films 451–452, 619–623 (2004). [CrossRef]
  15. L. A. A. Pettersson, L. S. Roman, and O. Inganäs, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” J. Appl. Phys. 86(1), 487–496 (1999). [CrossRef]
  16. F. C. Chen, J. L. Wu, C. L. Lee, W. C. Huang, H. M. P. Chen, and W. C. Chen, “Flexible Polymer Photovoltaic Devices Prepared With Inverted Structures on Metal Foils,” IEEE Electron Device Lett. 30(7), 727–729 (2009). [CrossRef]
  17. M. Glatthaar, M. Niggemann, B. Zimmermann, P. Lewer, M. Riede, A. Hinsch, and J. Luther, “Organic solar cells using inverted layer sequence,” Thin Solid Films 491(1-2), 298–300 (2005). [CrossRef]
  18. E. Lioudakis, A. Othonos, I. Alexandrou, and Y. Hayashi, “Optical properties of conjugated poly(3-hexylthiophene)/[6,6]-phenylC61-butyric acid methyl ester composites,” J. Appl. Phys. 102(8), 083104 (2007). [CrossRef]
  19. L. A. A. Pettersson, F. Carlsson, O. Inganäs, and H. Arwin, “Spectroscopic ellipsometry studies of the optical properties of doped poly(3,4-ethylenedioxythiophene): an anisotropic metal,” Thin Solid Films 313–314(1-2), 356–361 (1998). [CrossRef]
  20. J. Bartella, J. Schroeder, and K. Witting, “Characterization of ITO- and TiOxNy films by spectroscopic ellipsometry, spectraphotometry and XPS,” Appl. Surf. Sci. 179(1-4), 181–190 (2001). [CrossRef]
  21. P. B. Johnson and R. W. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B 9(12), 5056–5070 (1974). [CrossRef]
  22. D. W. Sievers, V. Shrotriya, and Y. Yang, “Modeling optical effects and thickness dependent current in polymer bulk-heterojunction solar cells,” J. Appl. Phys. 100(11), 114509 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited