OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 5 — Mar. 1, 2010
  • pp: 5257–5270

Imaging outer segment renewal in living human cone photoreceptors

Ravi S. Jonnal, Jason R. Besecker, Jack C. Derby, Omer P. Kocaoglu, Barry Cense, Weihua Gao, Qiang Wang, and Donald T. Miller  »View Author Affiliations

Optics Express, Vol. 18, Issue 5, pp. 5257-5270 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1028 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In vertebrate eyes, vision begins when the photoreceptor’s outer segment absorbs photons and generates a neural signal destined for the brain. The extreme optical and metabolic demands of this process of phototransduction necessitate continual renewal of the outer segment. Outer segment renewal has been long studied in post-mortem rods using autoradiography, but has been observed neither in living photoreceptors nor directly in cones. Using adaptive optics, which permits the resolution of cones, and temporally coherent illumination, which transforms the outer segment into a “biological interferometer,” we observed cone renewal in three subjects, manifesting as elongation of the cone outer segment, with rates ranging from 93 to 113 nm/hour (2.2 to 2.7 µm/day). In one subject we observed renewal occurring over 24 hours, with small but significant changes in renewal rate over the day. We determined that this novel method is sensitive to changes in outer segment length of 139 nm, more than 20 times better than the axial resolution of ultra-high resolution optical coherence tomography, the best existing method for depth imaging of the living retina.

© 2010 OSA

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(330.4270) Vision, color, and visual optics : Vision system neurophysiology
(330.5310) Vision, color, and visual optics : Vision - photoreceptors
(170.2655) Medical optics and biotechnology : Functional monitoring and imaging
(100.3175) Image processing : Interferometric imaging
(110.1080) Imaging systems : Active or adaptive optics

ToC Category:
Vision, Color, and Visual Optics

Original Manuscript: December 22, 2009
Revised Manuscript: February 14, 2010
Manuscript Accepted: February 18, 2010
Published: February 26, 2010

Virtual Issues
Vol. 5, Iss. 6 Virtual Journal for Biomedical Optics

Ravi S. Jonnal, Jason R. Besecker, Jack C. Derby, Omer P. Kocaoglu, Barry Cense, Weihua Gao, Qiang Wang, and Donald T. Miller, "Imaging outer segment renewal in living human cone photoreceptors," Opt. Express 18, 5257-5270 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. K. Noell, V. S. Walker, B. O. K. S. Kang, and S. Berman, “Retinal damage by light in rats,” Invest. Ophthalmol. Vis. Sci. 5, 450–473 (1966).
  2. D. T. Organisciak and B. S. Winkler, “Retinal light damage: practical and theoretical considerations,” Prog. Retin. Eye Res. 13(1), 1–29 (1994). [CrossRef]
  3. F. J. M. Daemen, “Vertebrate rod outer segment membranes,” Biochim. Biophys. Acta 300(3), 255–288 (1973). [PubMed]
  4. S. Futterman, “Metabolism and photochemistry in the retina,” in Physiology of the Eye, 6th ed., R. A. Moses, ed. (C. V. Mosby Co., St. Louis, 1975), pp. 406–419.
  5. B. Anderson., “Ocular effects of changes in oxygen and carbon dioxide tension,” Trans. Am. Ophthalmol. Soc. 66, 423–474 (1968). [PubMed]
  6. R. W. Young, “The renewal of photoreceptor cell outer segments,” J. Cell Biol. 33(1), 61–72 (1967). [CrossRef] [PubMed]
  7. R. W. Young and D. Bok, “Participation of the retinal pigment epithelium in the rod outer segment renewal process,” J. Cell Biol. 42(2), 392–403 (1969). [CrossRef] [PubMed]
  8. M. M. LaVail, “Rod outer segment disk shedding in rat retina: relationship to cyclic lighting,” Science 194(4269), 1071–1074 (1976). [CrossRef] [PubMed]
  9. D. Bok, “Retinal photoreceptor-pigment epithelium interactions. Friedenwald lecture,” Invest. Ophthalmol. Vis. Sci. 26(12), 1659–1694 (1985). [PubMed]
  10. R. H. Steinberg, I. Wood, and R. H. Steinberg, “Phagocytosis by pigment epithelium of human retinal cones,” Nature 252(5481), 305–307 (1974). [CrossRef] [PubMed]
  11. D. H. Anderson and S. K. Fisher, “Disc shedding in rodlike and conelike photoreceptors of tree squirrels,” Science 187(4180), 953–955 (1975). [CrossRef] [PubMed]
  12. R. S. Jonnal, J. Rha, Y. Zhang, B. Cense, W. Gao, and D. T. Miller, “In vivo functional imaging of human cone photoreceptors,” Opt. Express 15(24), 16141–16160 (2007). [CrossRef] [PubMed]
  13. Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, “High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography,” Opt. Express 14(10), 4380–4394 (2006). [CrossRef] [PubMed]
  14. W. Gao, B. Cense, Y. Zhang, R. S. Jonnal, D. T. Miller, and D. T. Miller, “Measuring retinal contributions to the optical Stiles-Crawford effect with optical coherence tomography,” Opt. Express 16(9), 6486–6501 (2008). [CrossRef] [PubMed]
  15. A. Pallikaris, D. R. Williams, and H. Hofer, “The reflectance of single cones in the living human eye,” Invest. Ophthalmol. Vis. Sci. 44(10), 4580–4592 (2003). [CrossRef] [PubMed]
  16. W. Snyder and C. Pask, “Stiles-crawford effect-explanation and consequences,” Vision Res. 13(6), 1115–1137 (1973). [CrossRef] [PubMed]
  17. Y. Zhang, J. Rha, R. S. Jonnal, and D. T. Miller, “Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina,” Opt. Express 13(12), 4792–4811 (2005). [CrossRef] [PubMed]
  18. J. Rha, R. S. Jonnal, K. E. Thorn, J. Qu, Y. Zhang, and D. T. Miller, “Adaptive optics flood-illumination camera for high speed retinal imaging,” Opt. Express 14(10), 4552–4569 (2006). [CrossRef] [PubMed]
  19. C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292(4), 497–523 (1990). [CrossRef] [PubMed]
  20. K. F. A. Ross and J. T. Y. Chou, “The physical nature of the lipid globules in the living neurones of Helix aspersa as indicated by measurements of refractive index,” J. Cell Sci. 3, 341 (1957).
  21. M. M. LaVail, “Circadian nature of rod outer segment disc shedding in the rat,” Invest. Ophthalmol. Vis. Sci. 19(4), 407–411 (1980). [PubMed]
  22. C. Bobu and D. Hicks, “Regulation of retinal photoreceptor phagocytosis in a diurnal mammal by circadian clocks and ambient lighting,” Invest. Ophthalmol. Vis. Sci. 50(7), 3495–3502 (2009). [CrossRef] [PubMed]
  23. A. I. Goldman, P. S. Teirstein, and P. J. O’Brien, “The role of ambient lighting in circadian disc shedding in the rod outer segment of the rat retina,” Invest. Ophthalmol. Vis. Sci. 19(11), 1257–1267 (1980). [PubMed]
  24. M. S. Grace, A. Chiba, and M. Menaker, “Circadian control of photoreceptor outer segment membrane turnover in mice genetically incapable of melatonin synthesis,” Vis. Neurosci. 16(5), 909–918 (1999). [CrossRef] [PubMed]
  25. F. Nandrot, and S. C. Finnemann, “Altered rhythm of photoreceptor outer segment phagocytosis in b5 integrin knockout mice,” in Advances in Experimental Medicine and Biology: Retinal Degenerative Diseases, J. G. Hollyfield, R. H. Anderson, and M. M. LaVail, eds. (Springer, New York, 2006), pp. 119–123.
  26. G. Tosini and C. Fukuhara, “The mammalian retina as a clock,” Cell Tissue Res. 309(1), 119–126 (2002). [CrossRef] [PubMed]
  27. R. W. Young, “The daily rhythm of shedding and degradation of rod and cone outer segment membranes in the chick retina,” Invest. Ophthalmol. Vis. Sci. 17(2), 105–116 (1978). [PubMed]
  28. S. S. Choi, N. Doble, J. Lin, J. Christou, and D. R. Williams, “Effect of wavelength on in vivo images of the human cone mosaic,” J. Opt. Soc. Am. A 22(12), 2598–2605 (2005). [CrossRef]
  29. M. M. LaVail, “Kinetics of rod outer segment renewal in the developing mouse retina,” J. Cell Biol. 58(3), 650–661 (1973). [CrossRef] [PubMed]
  30. M. M. LaVail, “Photoreceptor characteristics in congenic strains of RCS rats,” Invest. Ophthalmol. Vis. Sci. 20(5), 671–675 (1981). [PubMed]
  31. N. Buyukmihci and G. D. Aguirre, “Rod disc turnover in the dog,” Invest. Ophthalmol. Vis. Sci. 15, 579–584 (1976).
  32. G. D. Aguirre and L. Andrews, “Nomarski evaluation of rod outer segment renewal in a hereditary retinal degeneration. Comparison with autoradiographic evaluation,” Invest. Ophthalmol. Vis. Sci. 28(7), 1049–1058 (1987). [PubMed]
  33. R. W. Young, “The renewal of rod and cone outer segments in the rhesus monkey,” J. Cell Biol. 49(2), 303–318 (1971). [CrossRef] [PubMed]
  34. S. K. Fisher, B. A. Pfeffer, and D. H. Anderson, “Both rod and cone disc shedding are related to light onset in the cat,” Invest. Ophthalmol. Vis. Sci. 24(7), 844–856 (1983). [PubMed]
  35. D. H. Anderson, S. K. Fisher, P. A. Erickson, and G. A. Tabor, “Rod and cone disc shedding in the rhesus monkey retina: a quantitative study,” Exp. Eye Res. 30(5), 559–574 (1980). [CrossRef] [PubMed]
  36. C. J. Guérin, G. P. Lewis, S. K. Fisher, and D. H. Anderson, “Recovery of photoreceptor outer segment length and analysis of membrane assembly rates in regenerating primate photoreceptor outer segments,” Invest. Ophthalmol. Vis. Sci. 34(1), 175–183 (1993). [PubMed]
  37. D. Vollrath, A. Gal, Y. Li, D. A. Thompson, J. Weir, U. Orth, S. G. Jacobson, and E. Apfelstedt-Sylla, “Mutations in MERTK, the human orthologue of the RCS rat retinal dystrophy gene, cause retinitis pigmentosa,” Nat. Genet. 26(3), 270–271 (2000). [CrossRef] [PubMed]
  38. A. L. Kindzelskii, V. M. Elner, S. G. Elner, D. Yang, B. A. Hughes, and H. R. Petty, “Toll-like receptor 4 (TLR4) of retinal pigment epithelial cells participates in transmembrane signaling in response to photoreceptor outer segments,” J. Gen. Physiol. 124(2), 139–149 (2004). [CrossRef] [PubMed]
  39. S. Zareparsi, M. Buraczynska, K. E. H. Branham, S. Shah, D. Eng, M. Li, H. Pawar, B. M. Yashar, S. E. Moroi, P. R. Lichter, H. R. Petty, J. E. Richards, G. R. Abecasis, V. M. Elner, and A. Swaroop, “Toll-like receptor 4 variant D299G is associated with susceptibility to age-related macular degeneration,” Hum. Mol. Genet. 14(11), 1449–1455 (2005). [CrossRef] [PubMed]
  40. A. Grinvald, E. Lieke, R. D. Frostig, C. D. Gilbert, and T. N. Wiesel, “Functional architecture of cortex revealed by optical imaging of intrinsic signals,” Nature 324(6095), 361–364 (1986). [CrossRef] [PubMed]
  41. P. J. DeLint, T. T. Berendschot, J. van de Kraats, and D. van Norren, “Slow optical changes in human photoreceptors induced by light,” Invest. Ophthalmol. Vis. Sci. 41(1), 282–289 (2000). [PubMed]
  42. K. Tsunoda, Y. Oguchi, G. Hanazono, and M. Tanifuji, “Mapping cone- and rod-induced retinal responsiveness in macaque retina by optical imaging,” Invest. Ophthalmol. Vis. Sci. 45(10), 3820–3826 (2004). [CrossRef] [PubMed]
  43. K. Bizheva, R. Pflug, B. Hermann, B. Povazay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, “Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 5066–5071 (2006). [CrossRef] [PubMed]
  44. V. J. Srinivasan, M. Wojtkowski, J. G. Fujimoto, and J. S. Duker, “In vivo measurement of retinal physiology with high-speed ultrahigh-resolution optical coherence tomography,” Opt. Lett. 31(15), 2308–2310 (2006). [CrossRef] [PubMed]
  45. X. C. Yao and J. S. George, “Near-infrared imaging of fast intrinsic optical responses in visible light-activated amphibian retina,” J. Biomed. Opt. 11(6), 064030 (2006). [CrossRef]
  46. K. Grieve and A. Roorda, “Intrinsic signals from human cone photoreceptors,” Invest. Ophthalmol. Vis. Sci. 49(2), 713–719 (2008). [CrossRef] [PubMed]
  47. M. D. Abràmoff, Y. H. Kwon, D. Ts’o, P. Soliz, B. Zimmerman, J. Pokorny, and R. Kardon, “Visual stimulus-induced changes in human near-infrared fundus reflectance,” Invest. Ophthalmol. Vis. Sci. 47(2), 715–721 (2006). [CrossRef] [PubMed]
  48. D. G. Birch, E. L. Berson, and M. A. Sandberg, “Diurnal rhythm in the human rod ERG,” Invest. Ophthalmol. Vis. Sci. 25(2), 236–238 (1984). [PubMed]
  49. B. Cense, N. Nassif, T. Chen, M. Pierce, S. H. Yun, B. Park, B. Bouma, G. Tearney, and J. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Express 12(11), 2435–2447 (2004). [CrossRef] [PubMed]
  50. B. Cense, E. Koperda, J. M. Brown, O. P. Kocaoglu, W. Gao, R. S. Jonnal, and D. T. Miller, “Volumetric retinal imaging with ultrahigh-resolution spectral-domain optical coherence tomography and adaptive optics using two broadband light sources,” Opt. Express 17(5), 4095–4111 (2009). [CrossRef] [PubMed]
  51. R. J. Zawadzki, B. Cense, Y. Zhang, S. S. Choi, D. T. Miller, and J. S. Werner, “Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction,” Opt. Express 16(11), 8126–8143 (2008). [CrossRef] [PubMed]
  52. E. J. Fernández, B. Hermann, B. Považay, A. Unterhuber, H. Sattmann, B. Hofer, P. K. Ahnelt, and W. Drexler, “Ultrahigh resolution optical coherence tomography and pancorrection for cellular imaging of the living human retina,” Opt. Express 16(15), 11083–11094 (2008). [CrossRef] [PubMed]
  53. M. A. Choma, A. K. Ellerbee, C. Yang, T. L. Creazzo, and J. A. Izatt, “Spectral-domain phase microscopy,” Opt. Lett. 30(10), 1162–1164 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (6425 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited