OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 5 — Mar. 1, 2010
  • pp: 5305–5313

Optical multistability in a silicon-core silica-cladding fiber

Ivan A. Temnykh, Neil F. Baril, Zhiwen Liu, John V. Badding, and Venkatraman Gopalan  »View Author Affiliations

Optics Express, Vol. 18, Issue 5, pp. 5305-5313 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1684 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We fabricate a novel silicon-core silica-cladding optical fiber using high pressure chemical fluid deposition and investigate optical transmission characteristics at the telecommunications wavelength of 1550 nm. High thermo-optic and thermal expansion coefficients of silicon give rise to a thermal phase shift of 6.3 rad/K in a 4 mm-long, 6.9 µm diameter fiber acting as a Fabry-Perot resonator. Using both power and wavelength modulation, we observe all-optical bistability at a low threshold power of 15 mW, featuring intensity transitions of 1.4 dB occurring over <0.1 pm change in wavelength. Threshold powers for higher-order multistable states are predicted. Tristability is experimentally confirmed.

© 2010 OSA

OCIS Codes
(130.5990) Integrated optics : Semiconductors
(160.6000) Materials : Semiconductor materials
(190.1450) Nonlinear optics : Bistability
(190.4370) Nonlinear optics : Nonlinear optics, fibers

ToC Category:
Nonlinear Optics

Original Manuscript: January 11, 2010
Revised Manuscript: February 18, 2010
Manuscript Accepted: February 18, 2010
Published: February 26, 2010

Ivan A. Temnykh, Neil F. Baril, Zhiwen Liu, John V. Badding, and Venkatraman Gopalan, "Optical multistability in a silicon-core silica-cladding fiber," Opt. Express 18, 5305-5313 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. “Topics in Applied Physics,” 1–50, Silicon Photonics, L. Pavesi, D. J. Lockwood (Eds.), (Springer-Verlag Berlin Heidelberg 2004).
  2. B. Jalali and S. Fathpour, “Silicon Photonics,” J. Lightwave Technol. 24(12), 4600–4615 (2006). [CrossRef]
  3. V. R. Almeida and M. Lipson, “Optical bistability on a silicon chip,” Opt. Lett. 29(20), 2387–2389 (2004). [CrossRef] [PubMed]
  4. P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006). [CrossRef] [PubMed]
  5. L. Lagonigro, N. Healy, J. R. Sparks, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Low loss silicon fibers for photonics applications,” Appl. Phys. Lett. (to be published).
  6. S. L. McCall, H. M. Gibbs, and T. N. C. Venkatesan, “Optical transistor and bistability,” J. Opt. Soc. Am. 65, 1184 (1975).
  7. Hyatt M. Gibbs, Optical Bistability: Controlling Light with Light (Academic Press, Inc., 1985), Chap. 3.
  8. P. W. Smith, E. H. Turner, and P. J. Maloney, “Electrooptic nonlinear Fabry-Perot devices,” IEEE J. Quantum Electron. 14(3), 207–212 (1978). [CrossRef]
  9. H. J. Eichler, “Optical multistability in silicon observed with a cw laser at 1.06 μm,” Opt. Commun. 45(1), 62–66 (1983). [CrossRef]
  10. Q. Xu and M. Lipson, “Carrier-induced optical bistability in silicon ring resonators,” Opt. Lett. 31(3), 341–343 (2006). [CrossRef] [PubMed]
  11. D. Jager, F. Forsmann, and B. Wedding, “Low-power optical bistability and multistability in a self-electro-optic silicon interferometer,” IEEE J. Quantum Electron. 21(9), 1453–1457 (1985). [CrossRef]
  12. N. F. Baril, B. Keshavari, J. R. Sparks, M. Krishnamurthi, I. Temnykh, P. J. A. Sazio, A. Borhan, V. Gopalan, and J. V. Badding, “Chemical Fluidic Deposition for Void-Free Filling of Extreme Aspect Ratio Templates,” Adv. Mater. (to be published). [PubMed]
  13. D.-J. Won, M. O. Ramirez, H. Kang, V. Gopalan, N. F. Baril, J. Calkins, J. V. Badding, and P. J. A. Sazio, “All-optical modulation of laser light in amorphous silicon-filled microstructured optical fibers,” Appl. Phys. Lett. 91(16), 161112 (2007). [CrossRef]
  14. P. Roberts, F. Couny, H. Sabert, B. Mangan, T. Birks, J. Knight, and P. Russell, “Loss in solid-core photonic crystal fibers due to interface roughness scattering,” Opt. Express 13(20), 7779–7793 (2005). [CrossRef] [PubMed]
  15. F. David, Edwards, “Silicon (Si),” in Handbook of Optical Constants of Solids, E.D. Palik, ed. (Academic, Orlando, Fla., 1985).
  16. J. M. Vaughan, The Fabry-Perot Interferometer, (IOP Publishing Ltd, 1989), Chap. 10.
  17. A. De Rossi, V. Ortiz, M. Calligaro, L. Lanco, S. Ducci, V. Berger, and I. Sagnes, “Measuring propagation loss in a multimode semiconductor waveguide,” J. Appl. Phys. 97(7), 073105 (2005). [CrossRef]
  18. Q. Xu and M. Lipson, “Carrier-induced optical bistability in silicon ring resonators,” Opt. Lett. 31(3), 341–343 (2006). [CrossRef] [PubMed]
  19. G. Vienne, Y. Li, L. Tong, and P. Grelu, “Observation of a nonlinear microfiber resonator,” Opt. Lett. 33(13), 1500–1502 (2008). [CrossRef] [PubMed]
  20. T. Graham, Reed and Andrew P. Knights, Silicon Photonics, (John Wiley & Sons, Ltd. 2004), Chap. 4.
  21. Ioffe Physico-Technical Institute, “New Semiconductor Materials. Characteristics and Properties,” (2001). http://www.ioffe.rssi.ru/SVA/NSM/Semicond/Si/thermal.html

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited