OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 6 — Mar. 15, 2010
  • pp: 5449–5458

Micro-Raman characterization of Zn-diffused channel waveguides in Tm3+:LiNbO3

Marta Quintanilla, Emma Martín Rodríguez, Eugenio Cantelar, Fernando Cussó, and Concepción Domingo  »View Author Affiliations

Optics Express, Vol. 18, Issue 6, pp. 5449-5458 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (322 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this work micro-Raman scattering experiments have been performed in LiNbO3:Tm3+ samples with waveguides fabricated by Zn2+ in-diffusion. The results shown that Zn2+ ions enter the lattice in Li+ sites, but also in interstitial positions. This produces a compaction of the lattice close to the surface of the sample, generating the waveguide. It is shown that this region is surrounded by a different area in which the lattice is relaxed to recover the characteristic lattice parameters of LiNbO3:Tm3+.

© 2010 OSA

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(300.0300) Spectroscopy : Spectroscopy

ToC Category:
Integrated Optics

Original Manuscript: December 7, 2009
Revised Manuscript: January 20, 2010
Manuscript Accepted: January 29, 2010
Published: March 2, 2010

Marta Quintanilla, Emma Martín Rodríguez, Eugenio Cantelar, Fernando Cussó, and Concepción Domingo, "Micro-Raman characterization of Zn-diffused channel waveguides in Tm3+:LiNbO3," Opt. Express 18, 5449-5458 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. K. Das, H. Suche, and W. Sohler, “Single-frequency Ti:Er:LiNbO3 distributed Bragg reflector waveguide laser with thermally fixed photorefractive cavity,” Appl. Phys. B 73, 439–442 (2001).
  2. A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007). [CrossRef]
  3. J. A. Mackenzie, “Dielectric solid-state planar waveguide lasers: a review,” IEEE J. Quantum Electron. 13(3), 626–637 (2007). [CrossRef]
  4. F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106(8), 081101 (2009). [CrossRef]
  5. W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Optical Devices in Lithium Niobate,” Opt. Photon. News 19(1), 24–31 (2008). [CrossRef]
  6. E. Lallier, J. P. Pocholle, M. Papuchon, M. de Micheli, M. J. Li, Q. He, D. B. Ostrowsky, C. Grezes-Besset, and E. P. Pelletier, “Nd:MgO:LiNbO(3) waveguide laser and amplifier,” Opt. Lett. 15(12), 682–684 (1990). [CrossRef] [PubMed]
  7. R. Paschotta, N. Moore, W. A. Clarkson, A. C. Tropper, D. C. Hanna, and G. Mazé, “230 mW of blue light from a thulium-doped upconversion fiber laser,” IEEE J. Quantum Electron. 3(4), 1100–1102 (1997). [CrossRef]
  8. E. Cantelar, J. A. Sanz-García, G. Lifante, F. Cussó, and P. L. Pernas, “Single polarized Tm3+ laser in Zn-diffused LiNbO3 channel waveguides,” Appl. Phys. Lett. 86(16), 161119 (2005). [CrossRef]
  9. A. S. Gouveia-Neto, L. A. Bueno, R. F. do Nascimento, E. A. da Silva, E. B. da Costa, and V. B. do Nascimento, “White light generation by frequency upconversion in Tm3+/Ho3+/Yb3+- codoped fluorolead germanate glass,” Appl. Phys. Lett. 91(9), 091114 (2007). [CrossRef]
  10. S. Aozasa, H. Masuda, M. Shimizu, and M. Yamada, “Highly efficient S-Band thulium-doped fiber amplifier employing high-thulium-concentration technique,” J. Lightwave Technol. 25(8), 2108–2114 (2007). [CrossRef]
  11. R. Nevado and G. Lifante, “Low-loss, damage-resistant optical wave-guide in Zn-diffused LiNbO3 by a two step procedure,” Appl. Phys., A Mater. Sci. Process. 72(6), 725–728 (2001). [CrossRef]
  12. V. Dierolf and C. Sandmann, “Confocal two-photon emission microscopy: a new approach to waveguide imaging,” J. Lumin. 102–103, 201–205 (2003). [CrossRef]
  13. V. Dierolf and C. Sandmann, “Inspection of periodically poled waveguide devices by confocal luminescence microscopy,” Appl. Phys. B 78(3-4), 363–366 (2004). [CrossRef]
  14. Y. Zhang, L. Guilbert, and P. Bourson, “Characterization of Ti:LiNbO3 waveguides by micro-Raman and luminescence spectroscopy,” Appl. Phys. B 78(3-4), 355–361 (2004). [CrossRef]
  15. A. Harhira, Y. Zhang, P. Bourson, L. Guilbert, M. D. Fontana, M. P. De Micheli, “Raman probing of proton exchange waveguides in lithium niobate,” 352, 153–157 (2007).
  16. D. Jaque, E. Cantelar, and G. Lifante, “Lattice micro-modifications induced by Zn diffusion in Nd:LiNbO3 channel waveguides probed by Nd3+ confocal micro-luminescence,” Appl. Phys. B 88(2), 201–204 (2007). [CrossRef]
  17. A. Ródenas, A. H. Nejadmalayeri, D. Jaque, and P. Herman, “Confocal Raman imaging of optical waveguides in LiNbO3 fabricated by ultrafast high-repetition rate laser-writing,” Opt. Express 16(18), 13979–13989 (2008). [CrossRef] [PubMed]
  18. D. Jaque, F. Chen, and Y. Tan, “Scanning confocal fluorescnce imaging and micro-Raman investigations of oxygen implanted channel waveguides in Nd:MgO:LiNbO3,” Appl. Phys. Lett. 92(16), 161908 (2008). [CrossRef]
  19. M. Quintanilla, E. Martín Rodríguez, E. Cantelar, D. Jaque, J. A. Sanz-García, G. Lifante, and F. Cussó, “Confocal micro-luminescence of Zn-diffused LiNbO3:Tm3+ channel waveguides,” J. Lumin. 129(12), 1698–1701 (2009). [CrossRef]
  20. D. Jaque and F. Chen, “High resolution fluorescence imaging of damage regions in H+ ion implanted Nd:MgO:LiNbO3 channel waveguides,” Appl. Phys. Lett. 94(1), 011109 (2009). [CrossRef]
  21. I. Suárez and G. Lifante, “Detailed study of the two steps for fabricating LiNbO3:Zn optical waveguides,” Appl. Phys. Express 2, 022202 (2009). [CrossRef]
  22. E. Cantelar, G. A. Torchia, J. A. Sanz-García, P. L. Pernas, G. Lifante, and F. Cussó, “Tm3+-doped Zn-diffused LiNbO3 channel waveguides,” Phys. Scr. T 118, 69–71 (2005). [CrossRef]
  23. V. Caciuc, A. Postnikov, and G. Borstel, “Ab initio structure and zone-center phonons in LiNbO3,” Phys. Rev. B 61(13), 8806–8813 (2000). [CrossRef]
  24. R. Mouras, M. D. Fontana, P. Bourson, and A. V. Postnikov, “Lattice site of Mg ion in LiNbO3 crystal determined by Raman spectroscopy,” J. Phys. Condens. Matter 12(23), 5053–5059 (2000). [CrossRef]
  25. R. Mouras, P. Bourson, M. D. Fontana, and G. Boulon, “Raman spectroscopy as a probe of rare-earth ions location in LiNbO3 crystals,” Opt. Commun. 197(4-6), 439–444 (2001). [CrossRef]
  26. C.-T. Chia, M.-L. Sun, M.-L. Hu, J.-Y. Chang, W.-S. Tse, Z.-P. Yang, and H.-H. Chen, “Room temperature A1(TO) and OH- absorption spectra of Zn-doped lithium niobate crystals,” Jpn. J. Appl. Phys. 42(Part 1, No. 9B), 6234–6237 (2003). [CrossRef]
  27. A. Rodenas, L.M. Maestro, M.O. Ramirez, G.A. Torchia, L. Roso, F. Chen, and D. Jaque, “Anisotropic lattice changes in femtosecond laser inscribed Nd3+:MgO:LiNbO3 optical waveguides,” 106, 013110 (2009).
  28. F. Abdi, M. D. Fontana, M. Aillerie, and P. Bourson, “Coexistence of Li and Nb vacancies in the defect structure of pure LiNbO3 and its relationship to optical properties,” Appl. Phys., A Mater. Sci. Process. 83(3), 427–434 (2006). [CrossRef]
  29. T. S. Chernaya, T. R. Volk, I. A. Verin, and V. I. Simonov, “Threshold Concentrations in Zn-Doped Lithium Niobate Crystals and Their Structural Conditionality,” Crystallogr. Rep. 53(4), 573–578 (2008). [CrossRef]
  30. C.-Y. Chen, J.-C. Chen, and C.-T. Chia, “Growth and optical properties of different compositions of LiNbO3 single crystal fibers,” Opt. Mater. 30(3), 393–398 (2007). [CrossRef]
  31. V. A. Fedorov, Yu. N. Korkishko, G. Lifante, and F. Cussó, “Optical and structural characterization of Zinc vapour diffused waveguides in LiNbO3 crystals,” J. Eur. Ceram. Soc. 19(6-7), 1563–1567 (1999). [CrossRef]
  32. A. Jayaraman and A. A. Ballman, “Effect of pressure on the Raman modes in LiNbO3 and LiTaO3,” J. Appl. Phys. 60(3), 1208–1210 (1986). [CrossRef]
  33. F. Abdi, M. Aillerie, M. Fontana, P. Bourson, T. Volk, B. Maximov, S. Sulyanov, N. Rubinina, and M. Wöhlecke, “Influence of Zn doping on electrooptical properties and structure parameters of lithium niobate crystals,” Appl. Phys. B 68(5), 795–799 (1999). [CrossRef]
  34. T. S. Chernaya, B. A. Maksimov, T. R. Volk, N. M. Rubinina, and V. I. Simonov, “Zn atoms in lithium niobate and mechanism of their insertion into crystals,” JETP Lett. 73(2), 103–106 (2001). [CrossRef]
  35. L. Zhao, X. Wang, B. Wang, W. Wen, and T.-Y. Zhang, “ZnO-doped LiNbO3 single crystals studied by X-ray and density measurements,” Appl. Phys. B 78(6), 769–774 (2004). [CrossRef]
  36. D. Xue and X. He, “Dopant occupancy and structural stability of doped lithium niobate crystals,” Phys. Rev. B 73(6), 064113 (2006). [CrossRef]
  37. A. Lorenzo, H. Jaffrezic, B. Roux, G. Boulon, and J. García-Solé, “Lattice location of rare-earth ions in LiNbO3,” Appl. Phys. Lett. 67(25), 3735–3737 (1995). [CrossRef]
  38. R. Nevado, C. Sada, F. Segato, F. Caccavale, A. Kling, J. C. Soares, E. Cantelar, F. Cussó, and G. Lifante, “Compositional characterization of Zn-diffused lithium niobate waveguides,” Appl. Phys. B 73, 555–558 (2001).
  39. J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process. 89(1), 127–132 (2007). [CrossRef]
  40. M. V. Hobden and J. Warner, “The temperature dependence of the refractive indices of pure lithium niobate,” Phys. Lett. 22(3), 243–244 (1966). [CrossRef]
  41. W. Que, S. Lim, L. Zhang, and X. Yao, “The magnesium diffused layer characteristics of a lithium niobate single crystal with magnesium-ion indiffusion,” Jpn. J. Appl. Phys. 37(Part 1, No. 3A), 903–907 (1998). [CrossRef]
  42. Y. Avrahami and E. Zolotoyabko, “Diffusion and structural modification of Ti:LiNbO3, studied by high-resolution x-ray diffraction,” J. Appl. Phys. 85(9), 6447–6452 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited