OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 6 — Mar. 15, 2010
  • pp: 5459–5465

Silver superlens using antisymmetric surface plasmon modes

Wook-Jae Lee, Jae-Eun Kim, Hae Yong Park, and Myung-Hyun Lee  »View Author Affiliations

Optics Express, Vol. 18, Issue 6, pp. 5459-5465 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (494 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Silver lenses having super-resolution are analyzed in terms of antisymmetric modes of surface plasmon which have the ability to amplify evanescent waves in UV region. Antisymmetric surface plasmon modes excited by subwavelength grating enhances the resolution and contrast of silver superlens. By using a 20 nm-thick silver superlens, the half-pitch resolution of ~ λ0/8 can be achieved with good contrast at a free space wavelength of 435 nm. The resolution of silver superlens can also be improved using shorter illumination wavelength. We show that the thinner the lens, the better the imaging ability of the silver superlens due to the excitation of antisymmetric surface plasmon modes of higher propagation wave vectors. The thickness of lens is varied from 20 to 40 nm in a three layer system, SiO2-Ag-SiO2. Obtained results illustrate that practical application for patterning periodic structures with good contrast and penetration depth can be achieved by using antisymmetric surface plasmon modes.

© 2010 Optical Society of America

OCIS Codes
(080.3620) Geometric optics : Lens system design
(100.6640) Image processing : Superresolution
(110.5220) Imaging systems : Photolithography
(240.6680) Optics at surfaces : Surface plasmons
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Optics at Surfaces

Original Manuscript: January 14, 2010
Revised Manuscript: February 11, 2010
Manuscript Accepted: February 19, 2010
Published: March 2, 2010

Wook-Jae Lee, Jae-Eun Kim, Hae Yong Park, and Myung-Hyun Lee, "Silver superlens using antisymmetric surface plasmon modes," Opt. Express 18, 5459-5465 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000). [CrossRef] [PubMed]
  2. V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of ? and μ," Sov. Phys. Usp. 10, 509-514 (1968). [CrossRef]
  3. D. O. S. Melville and R. J. Blaikie, "Super-resolution imaging through a planar silver layer," Opt. Express 13, 2127-2134 (2005). [CrossRef] [PubMed]
  4. N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005). [CrossRef] [PubMed]
  5. Z. Liu, N. Fang, T. J. Yen, and X. Zhang, "Rapid growth of evanescent wave by a silver superlens," Appl. Phys. Lett. 83, 5184-5186 (2003). [CrossRef]
  6. N. Fang, Z. Liu, T. J. Yen, and X. Zhang, "Regenerating evanescent waves from a silver superlens," Opt. Express 11, 682-687 (2003). [CrossRef] [PubMed]
  7. D. Sarid, "Long-range surface-plasma waves on very thin metal films," Phys. Rev. Lett. 47, 1927-1930 (1981). [CrossRef]
  8. G. I. Stegeman, J. J. Burke, and D. G. Hall, "Surface-polaritonlike waves guided by thin, lossy metal films," Opt. Lett. 8,383-385 (1983). [CrossRef] [PubMed]
  9. X. Luo and T. Ishihara, "Surface plasmon resonant interference nanolithography technique," Appl. Phys. Lett. 84, 4780-4782 (2004). [CrossRef]
  10. X. Luo and T. Ishihara, "Subwavelength photolithography based on surface-plasmon polariton resonance," Opt. Express 12, 3055-3065 (2004). [CrossRef] [PubMed]
  11. R. J. Blaikie and S. J. McNab, "Evanescent interferometric lithography," Appl. Opt. 40, 1692-1698 (2001). [CrossRef]
  12. W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, "Plasmonic nanolithography," Nano Lett. 4,1085-1088 (2004). [CrossRef]
  13. Z. W. Liu, Q. H. Wei, and X. Zhang, "Surface plasmon interference nanolithography," Nano Lett. 5, 957-961 (2005). [CrossRef] [PubMed]
  14. A. D. Rakic, A. B. Djrisic, J. M. Elazar, and M. L. Majewski, "Optical properties of metallic films for verticalcavity optoelectronic devices," Appl. Opt. 37, 5271-5283 (1998). [CrossRef]
  15. Handbook of Optical Constants of Solids, edited by E. Palik (Academic Press, New York, 1985).
  16. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, "Planar metal plasmon waveguides: frequencydependent dispersion, propagation, localization, and loss beyond the free electron model," Phys. Rev. B 72, 075405 (2005). [CrossRef]
  17. C. Reale, "Optical constants of vacuum deposited thin metal films in the near infrared," Infrared Phys. 10, 175-181 (1970). [CrossRef]
  18. M. Yano, M. Fukui, M. Haraguchi, and Y. Shintani, "In situ and real-time observation of optical constants of metal films during growth," Surf. Sci. 227, 129-137 (1990). [CrossRef]
  19. W.-J. Lee, J.-E. Kim, H. Y. Park, S. Park, M.-s. Kim, J. T. Kim, and J. J. Ju, "Optical constants of evaporated gold films measured by surface plasmon resonance at telecommunication wavelengths," J. Appl. Phys. 103, 073713 (2008). [CrossRef]
  20. D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, "Limitations on subdiffraction imaging with a negative refractive index slab," Appl. Phys. Lett. 82, 1506-1508 (2003). [CrossRef]
  21. N. Fang and X. Zhang,"Imaging properties of a metamaterial superlens," Appl. Phys. Lett. 82, 161-163 (2003). [CrossRef]
  22. C. M. Moore, M. D. Arnold, P. J. Bones, and R. J. Blaikie, "Image fidelity for single- and multi-layer silver superlenses," J. Opt. Soc. Am. A 25, 911-918 (2008). [CrossRef]
  23. S. A. Ramakrishna, "Physics of negative refractive index materials," Rep. Prog. Phys. 68, 449-521 (2005). [CrossRef]
  24. http://ab-initio.mit.edu/meep
  25. R. J. Blaikie and S. J. McNab, "Simulation study of ‘perfect lenses’ for near-field optical nanolithography," Microelectron. Eng. 61-62, 97-103 (2002).
  26. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, Berlin, 1988).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited