OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 6 — Mar. 15, 2010
  • pp: 6024–6032

Room temperature detection of sub-terahertz radiation in double-grating-gate transistors

D. Coquillat, S. Nadar, F. Teppe, N. Dyakonova, S. Boubanga-Tombet, W. Knap, T. Nishimura, T. Otsuji, Y. M. Meziani, G. M. Tsymbalov, and V. V. Popov  »View Author Affiliations


Optics Express, Vol. 18, Issue 6, pp. 6024-6032 (2010)
http://dx.doi.org/10.1364/OE.18.006024


View Full Text Article

Enhanced HTML    Acrobat PDF (274 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Room temperature photovoltaic non-resonant detection by large area double-grating-gate InGaP/InGaAs/GaAs heterostructures was investigated in sub-THz range (0.24 THz). Semi-quantitative estimation of the characteristic detection length combined with self-consistent calculations of the electric fields excited in the structure by incoming terahertz radiation allowed us to interpret quantitatively the results and conclude that this detection takes place mainly in the regions of strong oscillating electric field excited in depleted portions of the channel.

© 2010 OSA

OCIS Codes
(040.0040) Detectors : Detectors
(040.1880) Detectors : Detection
(050.2770) Diffraction and gratings : Gratings
(040.2235) Detectors : Far infrared or terahertz
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Detectors

History
Original Manuscript: November 13, 2009
Revised Manuscript: December 18, 2009
Manuscript Accepted: December 18, 2009
Published: March 11, 2010

Citation
D. Coquillat, S. Nadar, F. Teppe, N. Dyakonova, S. Boubanga-Tombet, W. Knap, T. Nishimura, T. Otsuji, Y. M. Meziani, G. M. Tsymbalov, and V. V. Popov, "Room temperature detection of sub-terahertz radiation in double-grating-gate transistors," Opt. Express 18, 6024-6032 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-6-6024


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Dyakonov and M. Shur, “Plasma wave electronics: novel terahertz devices using two dimensional electron fluid,” IEEE Trans. Electron. Dev. 43(10), 1640–1645 (1996). [CrossRef]
  2. W. Knap, V. Kachorovskii, Y. Deng, S. Rumyantsev, J.-Q. Lü, R. Gaska, M. S. Shur, G. Simin, X. Hu, M. Asif Khan, C. A. Saylor, and L. C. Brunel, “Nonresonant detection of terahertz radiation in field effect transistors,” J. Appl. Phys. 91(11), 9346–9353 (2002). [CrossRef]
  3. W. Knap, F. Teppe, Y. Meziani, N. Dyakonova, J. Lusakowski, F. Boeuf, T. Skotnicki, D. Maude, S. Rumyantsev, and M. S. Shur, “Plasma wave detection of sub-terahertz and terahertz radiation by silicon field-effect transistors,” Appl. Phys. Lett. 85(4), 675–677 (2004). [CrossRef]
  4. R. Tauk, F. Teppe, S. Boubanga, D. Coquillat, W. Knap, Y. M. Meziani, C. Gallon, F. Boeuf, T. Skotnicki, C. Fenouillet-Beranger, D. K. Maude, S. Rumyantsev, and M. S. Shur, “Plasma wave detection of terahertz radiation by silicon field effect transistors: responsivity and noise equivalent power,” Appl. Phys. Lett. 89(25), 253511 (2006). [CrossRef]
  5. W. Knap, Y. Deng, S. Rumyantsev, J.-Q. Lü, M. S. Shur, C. A. Saylor, and L. C. Brunel, “Resonant detection of subterahertz radiation by plasma waves in a submicron field-effect transistor,” Appl. Phys. Lett. 80(18), 3433–3435 (2002). [CrossRef]
  6. W. Knap, Y. Deng, S. Rumyantsev, and M. S. Shur, “Resonant detection of subterahertz and terahertz radiation by plasma waves in submicron field-effect transistors,” Appl. Phys. Lett. 81(24), 4637–4639 (2002). [CrossRef]
  7. A. El Fatimy, F. Teppe, N. Dyakonova, W. Knap, D. Seliuta, G. Valušis, A. Shchepetov, Y. Roelens, S. Bollaert, A. Cappy, and S. Rumyantsev, “Resonant and voltage-tunable terahertz detection in InGaAs/InP nanometer transistors,” Appl. Phys. Lett. 89(13), 131926 (2006). [CrossRef]
  8. S. J. Allen, D. S. Tsui, and R. A. Logan, “Observation of the two-dimensional plasmon in silicon inversion layers,” Phys. Rev. Lett. 38(17), 980–983 (1977). [CrossRef]
  9. T. N. Theis, “Plasmons in inversion layers,” Surf. Sci. 98(1-3), 515–532 (1980). [CrossRef]
  10. E. Batke, D. Heitmann, and C. W. Tu, “Plasmon and magnetoplasmon excitation in two-dimensional electron space-charge layers on GaAs,” Phys. Rev. B 34(10), 6951–6960 (1986). [CrossRef]
  11. V. V. Popov, M. S. Shur, G. M. Tsymbalov, and D. V. Fateev, “Higher-order plasmon resonances in GaN field-effect transistor arrays,” Int. J. High Speed Electron. Syst. 17(03), 557–566 (2007). [CrossRef]
  12. V. V. Popov, O. V. Polischuk, T. V. Teperik, X. G. Peralta, S. J. Allen, N. J. M. Horing, and M. C. Wanke, “Absorption of terahertz radiation by plasmon modes in a grid-gated double-quantum-well field-effect transistor,” J. Appl. Phys. 94(5), 3556–3562 (2003). [CrossRef]
  13. X. G. Peralta, S. J. Allen, M. C. Wanke, N. E. Harff, J. A. Simmons, M. P. Lilly, J. L. Reno, P. J. Burke, and J. P. Eisenstein, “Terahertz photoconductivity and plasmon modes in double-quantum-well field-effect transistors,” Appl. Phys. Lett. 81(9), 1627–1629 (2002). [CrossRef]
  14. E. A. Shaner, M. Lee, M. C. Wanke, A. D. Grine, J. L. Reno, and S. J. Allen, “Single-quantum-well grating-gated terahertz plasmon detectors,” Appl. Phys. Lett. 87(19), 193507 (2005). [CrossRef]
  15. T. Otsuji, M. Hanabe, T. Nishimura, and E. Sano, “A grating-bicoupled plasma-wave photomixer with resonant-cavity enhanced structure,” Opt. Express 14(11), 4815–4825 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-11-4815 . [CrossRef] [PubMed]
  16. T. Otsuji, Y. M. Meziani, M. Hanabe, T. Ishibashi, T. Uno, and E. Sano, “Grating-bicoupled plasmon-resonant terahertz emitter fabricated with GaAs-based heterostructure material systems,” Appl. Phys. Lett. 89(26), 263502 (2006). [CrossRef]
  17. V. V. Popov, G. M. Tsymbalov, and M. S. Shur, “Plasma wave instability and amplification of terahertz radiation in field-effect-transistor arrays,” J. Phys. Condens. Matter 20(38), 384208 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited