OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 6 — Mar. 15, 2010
  • pp: 6347–6359

Optical properties of ordered vertical arrays of multi-walled carbon nanotubes from FDTD simulations

Hua Bao, Xiulin Ruan, and Timothy S. Fisher  »View Author Affiliations


Optics Express, Vol. 18, Issue 6, pp. 6347-6359 (2010)
http://dx.doi.org/10.1364/OE.18.006347


View Full Text Article

Enhanced HTML    Acrobat PDF (1399 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A finite-difference time-domain (FDTD) method is used to model thermal radiative properties of vertical arrays of multi-walled carbon nanotubes (MWCNT). Individual CNTs are treated as solid circular cylinders with an effective dielectric tensor. Consistent with experiments, the results confirm that CNT arrays are highly absorptive. Compared with the commonly used Maxwell-Garnett theory, the FDTD calculations generally predict larger reflectance and absorbance, and smaller transmittance, which are attributed to the diffraction and scattering within the cylinder array structure. The effects of volume fraction, tube length, tube distance, and incident angle on radiative properties are investigated systematically. Low volume fraction and long tubes are more favorable to achieve low reflectance and high absorbance. For a fixed volume fraction and finite tube length, larger periodicity results in larger reflectance and absorbance. The angular dependence studies reveal an optimum incident angle at which the reflectance can be minimized. The results also suggest that an even darker material could be achieved by using CNTs with good alignment on the top surface.

© 2010 Optical Society of America

OCIS Codes
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Thin Films

History
Original Manuscript: January 15, 2010
Revised Manuscript: February 23, 2010
Manuscript Accepted: March 3, 2010
Published: March 12, 2010

Virtual Issues
Focus Issue: Solar Concentrators (2010) Optics Express

Citation
Hua Bao, Xiulin Ruan, and Timothy S. Fisher, "Optical properties of ordered vertical arrays of multi-walled carbon nanotubes from FDTD simulations," Opt. Express 18, 6347-6359 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-6-6347


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Z. Li, S. S. Xie, L. X. Qian, B. H. Chang, B. S. Zou, W. Y. Zhou, R. A. Zhao, and G. Wang, "Large-scale synthesis of aligned carbon nanotubes," Science 274, 1701-1703 (1996). [CrossRef] [PubMed]
  2. G. L. Zhao, D. Bagayoko, and L. Yang, "Optical properties of aligned carbon nanotube mats for photonic applications," J. Appl. Phys. 99, 114311 (2006). [CrossRef]
  3. K. Kempa, B. Kimball, J. Ryhczynski, Z. P. Huang, P. F. Wu, D. Steeves, M. Sennett, M. Giersig, D. V. G. L. N. Rao, D. Carnahan, D. Z. Wang, J. Y. Lao, W. Z. Li, and Z. F. Ren, "Photonic crystals based on periodic arrays of aligned carbon nanotubes," Nano Lett. 3, 13-18 (2003). [CrossRef]
  4. E. Lidorikis and A. C. Ferrari, "Photonics with multiwall carbon nanotube arrays," ACS Nano 3, 1238-1248 (2009). [CrossRef] [PubMed]
  5. G. Y. Slepyan, M. V. Shuba, and S. A. Maksimenko, "Theory of optical scattering by achiral carbon nanotubes and their potential as optical nanoantennas," Phys. Rev. B 73, 195416 (2006). [CrossRef]
  6. K. Kempa, J. Ryhczynski, Z. P. Huang, K. Gregorczyk, A. Vidan, B. Kimball, J. Carlson, G. Benham, Y. Wang, A. Herczynski, and Z. F. Ren, "Carbon nanotubes as optical antennae," Adv. Mater. 19, 421-426 (2007). [CrossRef]
  7. X. J. Wang, J. D. Flicker, B. J. Lee,W. J. Ready, and Z. M. Zhang, "Visible and near-infrared radiative properties of vertically aligned multi-walled carbon nanotubes," Nanotechnology 20, 215704 (2009). [CrossRef] [PubMed]
  8. Y. Wang, K. Kempa, B. Kimball, J. B. Carlson, G. Benham, W. Z. Li, T. Kempa, J. Rybczynski, A. Herczynski, and Z. F. Ren, "Receiving and transmitting light-like radio waves: Antenna effect in arrays of aligned carbon nanotubes," Appl. Phys. Lett. 85, 2607 (2004). [CrossRef]
  9. S. Shoji, H. Suzuki, R. P. Zaccaria, Z. Sekkat, and S. Kawata, "Optical polarizer made of uniaxially aligned short single-wall carbon nanotubes embedded in a polymer film," Phys. Rev. B, 153407 (2008). [CrossRef]
  10. Z.-P. Yang, L. Ci, J. A. Bur, S.-Y. Lin, and P. M. Ajayan, "Experimental observation of extremely dark material made by a low-density nanotube array," Nano Lett. 8, 446 (2008). [CrossRef] [PubMed]
  11. K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, "A black body absorber from vertically aligned single-walled carbon nanotubes," Proc. Natl. Acad. Sci. USA 106, 6044-6047 (2008). [CrossRef]
  12. M. F. Lin, "Plasmons and optical properties of carbon nanotubes," Phys. Rev. B 50, 17744 (1994). [CrossRef]
  13. S. M. Bachilo, M. S. Strano, C. Kittrell, R. H. Hauge, R. E. Smalley, and R. B. Weisman, "Structure-assigned optical spectra of single-walled carbon nanotubes," Science 298, 2361-2366 (2002). [CrossRef] [PubMed]
  14. G. Y. Guo, K. C. Chu, D. S. Wang, and C. G. Duan, "Linear and nonlinear optical properites of carbon nanotubes from first-principles calculations," Phys. Rev. B 69, 205416 (2004). [CrossRef]
  15. M. F. Lin, "Optical spectra of single-wall carbon nanotube bundles," Phys. Rev. B 62, 13153 (2000). [CrossRef]
  16. L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, "Silicon nanowire solar cells," Appl. Phys. Lett. 91, 233117 (2007). [CrossRef]
  17. R. A. Street, P. Qi, R. Lujan, and W. S. Wong, "Reflectivity of disordered silicon nanowires," Appl. Phys. Lett. 93, 163109 (2008). [CrossRef]
  18. Z. Fan, H. Razavi, J. Do, A. Moriwaki, O. Ergen, Y. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu,M. Wu, J.W. Ager, and A. Javey, "Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates," Nat. Mater. 8, 648-653 (2009). [CrossRef] [PubMed]
  19. R. E. Camacho, A. R. Morgan, M. C. Flores, T. A. McLeod, V. S. Kumsomboone, B. J. Mordecai, R. Bhattacharjea, W. Tong, B. K. Wagner, J. D. Flicker, S. P. Turano, and W. J. Ready, "Carbon nanotube arrays for photovoltaic applications," JOM 59, 39-42 (2007). [CrossRef]
  20. T. Xu, S. Yang, S. V. Nair, and H. E. Ruda, "Nanowire-array-based photonic crystal cavity by finite-difference time-domain-calculations," Phy. Rev. B 75, 125104 (2007). [CrossRef]
  21. S. Yamashita, Y. Inoue, S. Maruyama, Y. Murakami, H. Yaguchi, M. Jablonski, and S. Y. Set, "Saturable absorbers incorporating carbon nanotubes directly synthesized onto substrates and fibers and their applications to mode-locked fiber lasers," Opt. Lett. 29, 1581-1583 (2004). [CrossRef] [PubMed]
  22. G. Chen, J. Wu, Q. Lu, H. R. Gutierrez, Q. Xiong, M. E. Pellen, J. S. Petko, D. H. Werner, and P. C. Eklund, "Optical antenna effect in semiconducting nanowires," Nano Lett. 8, 1341-1346 (2008). [CrossRef] [PubMed]
  23. L. Hu and G. Chen, "Analysis of optical absorption in silicon nanowire arrays for photovoltatic applications," Nano Lett. 7, 3249-3252 (2007). [CrossRef] [PubMed]
  24. J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, "Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays," Nano Lett. 9, 279-282 (2009). [CrossRef]
  25. F. J. Garcia-Vidal, J. M. Pitarke, and J. B. Pendry, "Effective medium theory of the optical properties of aligned carbon nanotubes," Phys. Rev. Lett. 78, 4289-4292 (1997). [CrossRef]
  26. W. L ¨u, J. Dong, and Z. Li, "Optical properties of aligned carbon nanotube systems studied by the effectivemedium approximation method," Phys. Rev. B 63, 033401 (2000). [CrossRef]
  27. J. Maxwell-Garnett, "Colours in metal glasses and in metallic films," Philos. Trans. R. Soc. London, Ser. A 203, 385-420 (1904). [CrossRef]
  28. O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. A. A. Bakkers, and A. Lagendijk, "Design of light scattering in nanowire materials for photovoltaic applications," Nano Lett. 8, 2638-2642 (2008). [CrossRef] [PubMed]
  29. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Norwood MA, 2000).
  30. L. Henrard and P. Lambin, "Calculation of energy loss for an electron passing near giant fullerenes," J. Phys. B 29, 5127 (1996). [CrossRef]
  31. L. G. Johnson and G. Dresselhaus, "Optical properties of graphite," Phys. Rev. B 7, 2275 (1973). [CrossRef]
  32. A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joanopoulos, S. G. Johnson, and G. Burr, "Improving accuracy by subpixel smoothing in FDTD," Opt. Lett. 31, 2972-2974 (2006). [CrossRef] [PubMed]
  33. F. Pedrotti, L. Pedrotti, and L. Pedrotti, Introduction to Opitcs (Pearson Education, New Jersey, 2007).
  34. S. Redmond, S. Rand, X. Ruan, and M. Kaviany, "Multiple scattering and nonlinear thermal emission of Yb3+,Er3+:Y2O3 nanopowders," J. Appl. Phys. 95, 4069-4077 (2004). [CrossRef]
  35. X. Ruan and M. Kaviany, "Photon localization and electromagnetic field enhancement in laser irradiated, random porous media," Microscale Thermophys. Eng. 9, 63-84 (2005). [CrossRef]
  36. X. Ruan and M. Kaviany, "Enhanced nonradiative relaxation and photoluminescence quenching in random, doped nanocrystalline powders," J. Appl. Phys. 97, 104331-1-8) (2005). [CrossRef]
  37. C. Lin and M. L. Povinelli, "Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications," Opt. Express 17, 19371 (2009). [CrossRef] [PubMed]
  38. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998). [CrossRef]
  39. J. Li, H. Yu, S. M. Wong, G. Zhang, X. Sun, P. G. Lo, and D. Kwong, "Si nanopillar array optimization on Si thin films for solar energy harvesting," Appl. Phys. Lett. 95, 033102 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited