OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 7 — Mar. 29, 2010
  • pp: 6437–6446

Compact Mach-Zehnder interferometer based on self-collimation of light in a silicon photonic crystal

Hoang M. Nguyen, M. A. Dundar, R. W. van der Heijden, E. W. J. M. van der Drift, H. W. M. Salemink, S. Rogge, and J. Caro  »View Author Affiliations

Optics Express, Vol. 18, Issue 7, pp. 6437-6446 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (7297 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a compact silicon photonic crystal Mach-Zehnder interferometer operating in the self-collimation regime. By tailoring the photonic band structure such as to produce self-collimated beams, it is possible to design beam splitters and mirrors and combine these to a 20 × 20 μm2 format. With transmission spectroscopy we find a pronounced unidirectional optical output, the output ratio being as high as 25 at the self-collimation wavelength. Furthermore, the self-collimated beams and the unidirectionality are clearly observed in real space using near-field and far-field optical microscopy. Interpretation of the optical data is strongly supported by different types of simulations.

© 2010 OSA

OCIS Codes
(350.0350) Other areas of optics : Other areas of optics
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: December 7, 2009
Revised Manuscript: January 15, 2010
Manuscript Accepted: February 16, 2010
Published: March 15, 2010

Hoang M. Nguyen, M. A. Dundar, R. W. van der Heijden, E. W. J. M. van der Drift, H. W. M. Salemink, S. Rogge, and J. Caro, "Compact Mach-Zehnder interferometer based on self-collimation of light in a silicon photonic crystal," Opt. Express 18, 6437-6446 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Kirchain and L. Kimerling, “A roadmap for nanophotonics,” Nat. Photonics 1(6), 303–305 (2007). [CrossRef]
  2. A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15(2), 660–668 (2007). [CrossRef] [PubMed]
  3. S. P. Anderson, A. R. Schroff, and P. M. Fauchet, “Slow light with photonic crystal for on-chip optical interconnects,” Advances in Optical Technologies (2008).
  4. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005). [CrossRef] [PubMed]
  5. M. A. Mansouri-Birjandi, M. K. Moravvej-Farshi, and A. Rostami, “Ultrafast low-threshold all-optical switch implemented by arrays of ring resonators coupled to a Mach-Zehnder interferometer arm: based on 2D photonic crystals,” Appl. Opt. 47(27), 5041–5050 (2008). [CrossRef] [PubMed]
  6. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74(9), 1212–1215 (1999). [CrossRef]
  7. J. Witzens, M. Loncar, and A. Scherer, “Self-collimation in planar photonic crystals,” IEEE J. Sel. Quantum Electron. 8(6), 1246–1257 (2002). [CrossRef]
  8. P. T. Rakich, M. S. Dahlem, S. Tandon, M. Ibanescu, M. Soljačić, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, and E. P. Ippen, “Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal,” Nat. Mater. 5(2), 93–96 (2006). [CrossRef] [PubMed]
  9. J. D. Joannopoulous, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic crystal: Molding the flow of light (Princeton University Press, 2008).
  10. D. W. Prather, S. Shi, D. M. Pustai, C. Chen, S. Venkataraman, A. Sharkawy, G. J. Schneider, and J. Murakowski, “Dispersion-based optical routing in photonic crystals,” Opt. Lett. 29(1), 50–52 (2004). [CrossRef] [PubMed]
  11. DD. W. Prather, S. Shi, J. Murakowski, G. J. Schneider, A. Sharkawy, C. Chen, B. L. Miao, and R. Martin, “Self-collimation in photonic crystal structures: a new paradigm for applications and device development,” J. Phys. D Appl. Phys. 40(9), 2635–2651 (2007). [CrossRef]
  12. X. Yu and S. Fan, “Bends and splitters for selft-collimated beams in photonic crystals,” Appl. Phys. Lett. 83(16), 3251–3253 (2003). [CrossRef]
  13. S.-G. Lee, S. S. Oh, J.-E. Kim, H. Y. Park, and C.-S. Kee, “Line defect induced bending and splitting of self-collimated beams in two-dimentional photonic crystals,” Appl. Phys. Lett. 87, 118106 (2005).
  14. D. Zhao, J. Zhang, P. Yao, X. Jiang, and X. Chen, “Photonic crystal Mach-Zehnder interferometer based on self-collimation,” Appl. Phys. Lett . 90, 231114–1–231114–3 (2007) [CrossRef]
  15. Finite-element frequency-domain simulations are done using the Finite Element Frequency Domain (FEFD) engine from Photon Design. http://www.photond.com/products/fefd . The FEFD engine is a 2D Maxwell solver for propagation of electromagnetic fields within an arbitrary photonic structure, which allows one to compute a steady state response for a single frequency. For further reference see [16].
  16. T. P. Felici, D. F. G. Gallagher, and L. Bolla, “Automatic Design and Optimisation of Si nanophotonics devices using Finite Element Frequency Domain Solvers,” in Proceedings of SPIE Vol. 6475, Integrated Optics: Devices, Materials, and Technologies XI(2007), pp. 64750L–1-64750L–9.
  17. R. Ramaswami, and K. N. Sivarajan, Optical networks: A pratical perspective (Morgan Kaufmann, San Francisco, 1998).
  18. L. Z. Zehnder, “Ein neuer Interferenzrefraktor,” Instrumentenkunde 11, 275–285 (1891).
  19. L. Z. Mach, “Ueber einen Interferenzrefraktor,” Instrumentenkunde 12, 89–94 (1892).
  20. J. Caro, E. M. Roeling, B. Rong, H. M. Nguyen, E. W. J. M. van der Drift, S. Rogge, F. Karouta, R. W. van der Heijden, and H. W. M. Salemink, “Transmission measurement of the photonic band gap of GaN photonic crystal slabs,” Appl. Phys. Lett. 93(5), 051117–051119 (2008). [CrossRef]
  21. K. Vynck, E. Centeno, M. L. Vassor d'Yerville, and D. Cassagne, “Efficient light coupling from integrated single-mode waveguides to supercollimating photonic crystals on silicon-on-insulator platforms,” Appl. Phys. Lett. 92(10), 103128–1, 103128–3 (2008). [CrossRef]
  22. S.-G. Lee, J. S. Choi, J.-E. Kim, H. Y. Park, and C.-S. Kee, “Reflection minimization at two-dimensional photonic crystal interfaces,” Opt. Express 16(6), 4270–4277 (2008). [CrossRef] [PubMed]
  23. I. Horcas, R. Fernández, J. M. Gómez -Rodriguez, J. Colchero, J. Gómez -Herrero, and A. M. Baro, “WSXM: A software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum. 78(1), 013705–1, 013705–013708 (2007). [CrossRef]
  24. W. Zhou, D. M. Mackie, M. Taysing-Lara, G. Dang, P. G. Newman, and S. Svensson, “Novel reconfigurable semiconductor photonic crystal-MEMS device,” Solid-State Electron. 50(6), 908–913 (2006). [CrossRef]
  25. K. L. Ekinci and M. L. Roukes, “Nanoelectromechanical systems,” Rev. Sci. Instrum. 76(6), 061101–1, 061101–061112 (2005). [CrossRef]
  26. T. Takahata, K. Hoshino, K. Matsumoto, and I. Shimoyama, in Proceedings of MEMS (Instanbul, Turkey, 2006), pp. 834–837.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited