OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 7 — Mar. 29, 2010
  • pp: 6703–6721

Photoanisotropic polarization gratings beyond the small recording angle regime

Man Xu, Dick K. G. de Boer, Chris M. van Heesch, Arthur J. H. Wachters, and H. Paul Urbach  »View Author Affiliations

Optics Express, Vol. 18, Issue 7, pp. 6703-6721 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1502 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Polarization gratings can be realized by polarization holographic recording in photoanisotropic materials. In this paper, we study two types of polarization gratings. One is recorded with two orthogonally circularly (OC) polarized beams and the other one with two orthogonally linearly (OL) polarized beams. The interference of both cases is explored beyond the small recording angle regime. A novel method is proposed to represent the polarization states of the modulation. The diffraction by polarization gratings is studied with rigorous diffraction theory. Simulations based on the Finite Element Method are performed for both OC and OL polarization gratings at small and large recording angles.

© 2010 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(090.0090) Holography : Holography
(160.5335) Materials : Photosensitive materials

ToC Category:
Diffraction and Gratings

Original Manuscript: October 29, 2009
Revised Manuscript: December 19, 2009
Manuscript Accepted: December 22, 2009
Published: March 17, 2010

Man Xu, Dick K. G. de Boer, Chris M. van Heesch, Arthur J. H. Wachters, and H. Paul Urbach, "Photoanisotropic polarization gratings beyond the small recording angle regime," Opt. Express 18, 6703-6721 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. A. Delaire and K. Nakatani, "Linear and Nonlinear Optical Properties of Photochromic Molecules and Materials," Chem. Rev. 100, 1817-1846 (2000). [CrossRef]
  2. L. Nikolova, T. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, "Polarization holographic gratings in side-chain azobenzene polyesters with linear and circular photoanisotropy," Appl. Opt. 35, 3835-3840 (1996). [CrossRef] [PubMed]
  3. I. Naydenova, L. Nikolova, T. Todorov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, "Polarimetric investigation of materials with both linear and circular anisotropy," J. Mod. Opt. 44, 1643-1650 (1997). [CrossRef]
  4. S. Sajti, Á. Kerekes, P. Ramanujam, and E. Lörincz, "Response function for the characterization of photo-induced anisotropy in azobenzene containing polymers," Appl. Phys. B 75, 677-685 (2002). [CrossRef]
  5. M. Schadt, H. Seiberle, and A. Schuster, "Optical patterning of multi-domain liquid-crystal displays with wide viewing angles," Nature 381, 212-215 (1996). [CrossRef]
  6. J. N. Eakin, Y. Xie, R. A. Pelcovits, M. D. Radcliffe, and G. P. Crawford, "Zero voltage Freedericksz transition in periodically aligned liquid crystals," Appl. Phys. Lett. 85, 1671 (2004). [CrossRef]
  7. M. J. Escuti and W. M. Jones, "Polarization-Independent Switching With High Contrast from a Liquid Crystal Polarization Grating," SID Symp. Dig. 37, 1443-1446 (2006). [CrossRef]
  8. C. Provenzano, P. Pagliusi, and G. Cipparrone, "Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces," Appl. Phys. Lett. 89, 121105 (2006). [CrossRef]
  9. H. Sarkissian, B. Park, N. Tabirian, and B. Zeldovich, "Periodically Aligned Liquid Crystal: Potential Application for Projection Displays," Mol. Cryst. Liq. Cryst. 451, 1-19 (2006). [CrossRef]
  10. N. Koumura, E. M. Geertsema, A. Meetsma, and B. L. Feringa, "Light-Driven Molecular Rotor: Unidirectional Rotation Controlled by a Single Stereogenic Cente," J. Am. Chem. Soc. 122, 12,005-12,006 (2000). [CrossRef]
  11. S. J. Zilker, T. Bieringer, D. Haarer, R. S. Stein, J. W. van Egmond, and S. G. Kostromine, "Holographic Data Storage in Amorphous Polymers," Adv. Mater. 10, 855 (1998). [CrossRef]
  12. J. Eickmans, T. Bieringer, S. Kostromine, H. Berneth, and R. Thoma, "Photo addressable Polymers: A New Class of Materials for Optical Data Storage and Holographic Memories," Jpn. J. Appl. Phys. 38, 1835-1836 (1999). [CrossRef]
  13. A. S. Matharu, S. Jeeva, and P. Ramanujam, "Liquid crystals for holographic optical data storage," Chem. Soc. Rev. 36, 1868-1880 (2007). [CrossRef] [PubMed]
  14. S. Hvilsted, F. Andruzzi, and P. S. Ramanujam, "Side-chain liquid-crystalline polyesters for optical information storage," Opt. Lett. 17, 1234-1236 (1992). [CrossRef] [PubMed]
  15. E. Loerincz, G. Szarvas, P. Koppa, F. Ujhelyi, G. Erdei, A. Sueto, P. Varhegyi, S. Sajti, A. Kerekes, T. Ujvari, and P. S. Ramanujam, "Polarization holographic data storage using azobenzene polyster as storage material," Proc. SPIE 4991, 34 (2003). [CrossRef]
  16. L. L. Nedelchev, A. S. Matharu, S. Hvilsted, and P. S. Ramanujam, "Photoinduced Anisotropy in a Family of Amorphous Azobenzene Polyesters for Optical Storage," Appl. Opt. 42, 5918-5927 (2003). [CrossRef] [PubMed]
  17. S. D. Kakichashvili, "Regularity in photoanisotropic phenomena," Opt. Spektrosk 52, 317-322 (1982).
  18. S. D. Kakichashvili, "Polarization-holographic recording in the general case of a reaction of a photoanisotropic medium," Kvantovaya Elektron. (Moscow) 10, 1976-1981 (1983).
  19. T. Todorov, L. Nikolova, and N. Tomova, "Polarization holography. 1: A new high-efficiency organic material with reversible photoinduced birefringence," Appl. Opt. 23, 4309 (1984). [CrossRef] [PubMed]
  20. T. Todorov, L. Nikolova, and N. Tomova, "Polarization holography. 2: Polarization holographic gratings in photoanisotropic materials with and without intrinsic birefringence," Appl. Opt. 23, 4588 (1984). [CrossRef] [PubMed]
  21. T. Todorov, L. Nikolova, K. Stoyanova, and N. Tomova, "Polarization holography. 3: Some applications of polarization holographic recording," Appl. Opt. 24, 785 (1985). [CrossRef] [PubMed]
  22. L. Nikolova and T. Todorov, "Diffraction Efficiency and Selectivity of Polarization Holographic Recording," J. Mod. Opt. 31, 579-588 (1984).
  23. L. Nikolova, T. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, "Photoinduced circular anisotropy in side-chain azobenzene polyesters," Opt. Mater. 8, 255-258 (1997). [CrossRef]
  24. T. Huang and K. H. Wagner, "Holographic diffraction in photoanisotropic organic materials," J. Opt. Soc. Am. A 10, 306 (1993). [CrossRef]
  25. T. Huang and K. H. Wagner, "Coupled Mode Analysis of Polarization Volume Hologram," IEEE J. Quantum Electron. 31, 372 (1995). [CrossRef]
  26. C. Oh and M. J. Escuti, "Time-domain analysis of periodic anisotropic media at oblique incidence: an efficient FDTD implementation," Opt. Express 14, 11,870-11,884 (2006). [CrossRef]
  27. C. M. van Heesch, "Polarization-Selective Diffraction for Display applications," Ph.D. thesis, Eindhoven University of Technology, Eindhoven (2007).
  28. B. Kilosanidze and G. Kakauridze, "Polarization-holographic gratings for analysis of light. 1. Analysis of completely polarized light," Appl. Opt. 46, 1040-1049 (2007). [CrossRef] [PubMed]
  29. M. Xu, "Diffractive Optics of Anisotropic Polarization Gratings," Ph.D. thesis, Delft University of Technology, Delft (2009).
  30. M. Attia and J. M. C. Jonathan, "Anisotropic Gratings Recorded from Two Circular Polarized Coherent Waves," Opt. Commun. 47, 85-90 (1983). [CrossRef]
  31. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, 1999).
  32. X. Wei, "Three Dimensional Rigorous Model for Optical Scattering Problems," Ph.D. thesis, Delft University of Technology, Delft (2006).
  33. X. Wei, A. J. Wachters, and H. P. Urbach, "Finite-element model for three-dimensional optical scattering problems," J. Opt. Soc. Am. A 24, 866-881 (2007). [CrossRef]
  34. "ILUPACK V2.1," URL http://www.math.tu-berlin.de/ilupack/.
  35. O. Schenk and K. Gärtner, "Solving Unsymmetric Sparse Systems of Linear Equations with PARDISO," Journal of Future Generation Computer Systems 20, 475-487 (2004). [CrossRef]
  36. O. Schenk and K. Gärtner, "On fast factorization pivoting methods for symmetric indefinite systems," Elec. Trans. Numer. Anal. 23, 158-179 (2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (2315 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited