OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 7 — Mar. 29, 2010
  • pp: 6740–6754

Resonance excitation and light concentration in sets of dielectric nanocylinders in front of a subwavelength aperture. Effects on extraordinary transmission

F.J. Valdivia-Valero and M. Nieto-Vesperinas  »View Author Affiliations

Optics Express, Vol. 18, Issue 7, pp. 6740-6754 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1126 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study the excitation of whispering gallery modes (WGM) in dielectric nanocylinders by light transmitted through a subwavelength slit in a metallic slab. Calculations are done both by the finite elements method and using FDTD simulations. We discuss the effect of that excitation on extraordinary transmission by the slit. In this way, we show the dominant role of the WGMs over the aperture enhanced transmission as regards the resulting transmitted intensity and its concentration inside the cylinders. When sets of these particles are placed in front of the slit, like linear or bifurcated chains, with or without bends, the concentration of WGMs is controlled by designing the geometry parameters, so that these surface waves are coupled by both waveguiding of the nanocylinder eigenmodes and by scattered propagating waves. Also, the choice of the wavelength and polarization of the illumination, allows to select the excitation of either bonding or antibonding states of the field transmitted through the aperture into the particles. These resonances are further enhanced when a beam emerges from the slit due to adding a periodic corrugation in the slab.

© 2010 Optical Society of America

OCIS Codes
(050.1220) Diffraction and gratings : Apertures
(050.1940) Diffraction and gratings : Diffraction
(230.5750) Optical devices : Resonators
(230.7370) Optical devices : Waveguides
(050.6624) Diffraction and gratings : Subwavelength structures
(250.6715) Optoelectronics : Switching

ToC Category:
Diffraction and Gratings

Original Manuscript: January 13, 2010
Revised Manuscript: March 2, 2010
Manuscript Accepted: March 6, 2010
Published: March 17, 2010

F. J. Valdivia-Valero and M. Nieto-Vesperinas, "Resonance excitation and light concentration in sets of dielectric nanocylinders in front of a subwavelength aperture. Effects on extraordinary transmission," Opt. Express 18, 6740-6754 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. F. Owen, R. K. Chang, and P.W. Barber, "Internal electric field distributions of a dielectric cylinder at resonance wavelengths," Opt. Lett. 6, 540-542 (1981). [CrossRef] [PubMed]
  2. J. R. Arias-González, and M. Nieto-Vesperinas, "Resonant near-field eigenmodes of nanocylinders on flat surfaces under both homogenous and inhomogenous lightwave excitation," J. Opt. Soc. Am. A 18, 657-665 (2001). [CrossRef]
  3. Z. Chen, A. Taflove, and V. Backman, "Photonic nanojet enhancement of backscattering of light by nanoparticles: a poetential novel visible-light ultramicroscopy technique," Opt. Express 12, 1214-1220 (2004). [CrossRef] [PubMed]
  4. S. V. Boriskina, P. Sewell, T. M. Benson, and A. I. Nosich, "Accurate simulation of two-dimensional optical microcavities with uniquely solvable boundary integral equations and trigonometric Galerkin discretization," J. Opt. Soc. Am. A 21, 393-402 (2004). [CrossRef]
  5. C. Tserkezis, N. Papanikolaou, E. Almpanis, and N. Stefanou, "Tailoring plasmons with metallic nanorod arrays," Phys. Rev. B 80, 125124 (2009). [CrossRef]
  6. K. J. Vahala, "Optical microcavities," Nature (London) 424, 839-846 (2003). [CrossRef] [PubMed]
  7. A. M. Kapitonov, and V. N. Astratov, "Observation of nanojet-induced modes with small propagation losses in chains of coupled spherical cavities," Opt. Lett. 32, 409-411 (2007). [CrossRef] [PubMed]
  8. Z. Chen, A. Taflove, and V. Backman, "Highly efficient optical coupling and transport phenomena in chains of dielectric microspheres," Opt. Lett. 31, 389-391 (2006). [CrossRef] [PubMed]
  9. S. V. Pishko, P. Sewell, T. M. Benson, and S. V. Boriskina, "Efficient analysis and design of low-loss WGM coupled resonator optical waveguide bends,"  25, 2487-2494 (2009).
  10. Y. Hara, T. Mukaiyama, K. Takeda, and M. Kuwata-Gonokami, "Heavy photon states in photonic chains of resonantly coupled cavities with supermonodispersive microspheres," Phys. Rev. Lett. 94, 203905 (2005). [CrossRef] [PubMed]
  11. L. I. Deych, and O. Roslyak, "Photonic band mixing in linear chains of optically coupled microspheres," Phys. Rev. E 73, 036606 (2006). [CrossRef]
  12. S. Deng, W. Cai, and V. N. Astratov, "Numerical study of light propagation via WGM’s in microcylinder coupled resonator optical waveguides," Opt. Express 12, 6468-6480 (2004). [CrossRef] [PubMed]
  13. B. R. Johnson, "Theory of morphology-dependent resonances: shape resonances and width formulas," J. Opt. Soc. Am. A 10, 343-352 (1993). [CrossRef]
  14. B. R. Johnson, "Morphology-dependent resonances of a dielectric sphere on a conducting plane," J. Opt. Soc. Am. A 11, 2055-2064 (1994). [CrossRef]
  15. S. E. Sburlan, L. A. Blanco, and M. Nieto-Vesperinas, "Plasmon excitations in sets of nanoscale cylinders and spheres," Phys. Rev. B 73, 035403 (2006). [CrossRef]
  16. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London) 391, 667-669 (1998). [CrossRef]
  17. F. J. García-Vidal, and L. Martín-Moreno, "Transmission and focusing of light in one-dimensional periodically nanostructured metals," Phys. Rev. B 66, 155412 (2002). [CrossRef]
  18. J. A. Porto, F. J. García-Vidal, and J. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845-2848 (1999). [CrossRef]
  19. H. J. Lezec, and T. Thio, "Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays," Opt. Express 12, 3629-3651 (2004). [CrossRef] [PubMed]
  20. N. García, and M. Nieto-Vesperinas, "Theory of electromagnetic wave transmission through metallic gratings of subwavelength slits,"  9, 490-495 (2007).
  21. J. R. Arias-González, and M. Nieto-Vesperinas, "Near field distributions of resonant modes in small dielectric objects on flat surfaces," Opt. Lett. 25, 782-784 (2000). [CrossRef]
  22. H. C. van de Hulst, Light scattering by Small Particles (Dover, New York, 1981).
  23. M. K. Chin, D. Y. Chu, and S. T. Ho, "Estimation of the spontaneous emission factor for microdisk lasers via the approximation of whispering gallery modes,"  75, 3302-3307 (1994).
  24. S. V. Boriskina, "Theoretical prediction of a dramatic Q-factor enhancement and degeneracy removal of WGM’s in symmetrical photonic molecules," Opt. Lett. 31, 338-340 (2006). [CrossRef] [PubMed]
  25. O. L. Muskens, S. L. Diedenhofen, B. C. Kaas, R. E. Algra, E. P. A. M. Bakkers, J. Gómez Rivas, and A. Lagendijk, "Large photonic strength of highly tunable resonant nanowire materials,"  9, 930-934 (2009).
  26. K. Vynck, D. Felbacq, E. Centeno, A. I. Cibuz, D. Cassagne, and B. Guizal, "Au-dielectric rod-type metamaterials at optical frequencies," Phys. Rev. Lett. 102, 133901 (2009). [CrossRef] [PubMed]
  27. E. D. Palik, Handbook of optical constants of solids (Academic Press, New York, 1998).
  28. C. Caloz, C. C. Chang, and T. Itoh, "Full-wave verification of the fundamental properties of left-handed materials in waveguide configurations," Appl. Phys. 90, 5483-5486 (2001). [CrossRef]
  29. J. L. García-Pomar, and M. Nieto-Vesperinas, "Transmission study of prisms and slabs of lossy negative index media," Opt. Express 12, 2081-2095 (2004). [CrossRef] [PubMed]
  30. J. L. García-Pomar, and M. Nieto-Vesperinas, "Waveguiding, collimation and subwavelength concentration in photonic crystals," Opt. Express 13, 7997-8007 (2005). [CrossRef] [PubMed]
  31. N. García, and M. Bai, "Theory of transmission of light by subwavelength cylindrical holes in metallic films," Opt. Express 14, 10028-10042 (2006). [CrossRef] [PubMed]
  32. C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, and J. Feldmann "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 077402 (2002). [CrossRef] [PubMed]
  33. H. Miyazaki, and Y. Jimba "Ab initio tight-binding description of morphology-dependent resonance in a besphere," Phys. Rev. B 62, 7976-7997 (2000). [CrossRef]
  34. M. Bayer, T. Gutbrod, J. P. Reithmaier, A. Forchel, T. L. Reinecke, P. A. Knipp, A. A. Dremin, and V. D. Kulakovskii, "Optical modes in photonic molecules," Phys. Rev. Lett. 81, 2582-2585 (1998). [CrossRef]
  35. V. N. Astratov, J. P. Franchak, and S. P. Ashili, "Optical coupling and transport phenomena in chains of spherical dielectric microresonators with size disorder," Appl. Phys. Lett. 85, 5508-5510 (2004). [CrossRef]
  36. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, T.W. Ebbesen, "Beaming light from a subwavelength aperture,"  297, 820-822 (2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited