OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 7 — Mar. 29, 2010
  • pp: 6841–6852

Deep and tapered silicon photonic crystals for achieving anti-reflection and enhanced absorption

Yung-Jr Hung, San-Liang Lee, and Larry A. Coldren  »View Author Affiliations

Optics Express, Vol. 18, Issue 7, pp. 6841-6852 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1444 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Tapered silicon photonic crystals (PhCs) with smooth sidewalls are realized using a novel single-step deep reactive ion etching. The PhCs can significantly reduce the surface reflection over the wavelength range between the ultra-violet and near-infrared regions. From the measurements using a spectrophotometer and an angle-variable spectroscopic ellipsometer, the sub-wavelength periodic structure can provide a broad and angular-independent antireflective window in the visible region for the TE-polarized light. The PhCs with tapered rods can further reduce the reflection due to a gradually changed effective index. On the other hand, strong optical resonances for TM-mode can be found in this structure, which is mainly due to the existence of full photonic bandgaps inside the material. Such resonance can enhance the optical absorption inside the silicon PhCs due to its increased optical paths. With the help of both antireflective and absorption-enhanced characteristics in this structure, the PhCs can be used for various applications.

© 2010 OSA

OCIS Codes
(160.4760) Materials : Optical properties
(220.4241) Optical design and fabrication : Nanostructure fabrication
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: January 25, 2010
Revised Manuscript: March 12, 2010
Manuscript Accepted: March 12, 2010
Published: March 17, 2010

Yung-Jr Hung, San-Liang Lee, and Larry A. Coldren, "Deep and tapered silicon photonic crystals for achieving anti-reflection and enhanced absorption," Opt. Express 18, 6841-6852 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Benisty, J.-M. Lourtioz, A. Chelnokov, S. Combrie, and X. Checoury, “Recent advances toward optical devices in semiconductor-based photonic crystals,” Proc. IEEE 94(5), 997–1023 (2006). [CrossRef]
  2. A. David, H. Benisty, and C. Weisbuch, “Optimization of light-diffracting photonic-crystals for high extraction efficiency LEDs,” J. Display Technol. 3(2), 133–148 (2007). [CrossRef]
  3. I. D. Block, L. L. Chan, and B. T. Cunningham, “Photonic crystal optical biosensor incorporating structured low-index porous dielectric,” Sens. Actuators B Chem. 120(1), 187–193 (2006). [CrossRef]
  4. D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic crystal geometry for organic solar cells,” Nano Lett. 9(7), 2742–2746 (2009). [CrossRef] [PubMed]
  5. Z. Fan, D. J. Ruebusch, A. A. Rathore, R. Kapadia, O. Ergen, P. W. Leu, and A. Javey, “Challenges and prospects of nanopillar-based solar cells,” Nano Res. 2(11), 829–843 (2009). [CrossRef]
  6. J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009). [CrossRef]
  7. E. B. Grann, M. G. Varga, and D. A. Pommet, “Optimal design for antireflective tapered two-dimensional subwavelength grating structures,” J. Opt. Soc. Am. A 12(2), 333–339 (1995). [CrossRef]
  8. S.-I. Inoue, S. Yokoyama, and Y. Aoyagi, “Direct determination of photonic band structure for waveguiding modes in two-dimensional photonic crystals,” Opt. Express 16(4), 2461–2468 (2008). [CrossRef] [PubMed]
  9. V. Astratov, D. Whittaker, I. Culshaw, R. Stevenson, M. Skolnick, T. Krauss, and R. De La Rue, “Photonic band-structure effects in the reflectivity of periodically patterned waveguides,” Phys. Rev. B 60(24), 16255–16258 (1999). [CrossRef]
  10. M. Galli, M. Agio, L. Andreani, M. Belotti, G. Guizzetti, F. Marabelli, M. Patrini, P. Bettotti, L. Dal Negro, Z. Gaburro, L. Pavesi, A. Lui, and P. Bellutti, “Spectroscopy of photonic bands in macroporous silicon photonic crystals,” Phys. Rev. B 65(11), 113111 (2002). [CrossRef]
  11. C. I. Hsieh, H. L. Chen, W. C. Chao, and F. H. Ko, “Optical properties of two-dimensional photonic-bandgap crystals characterized by spectral ellipsometry,” Microelectron. Eng. 73–74, 920–926 (2004). [CrossRef]
  12. C.-H. Lin, H.-L. Chen, W.-C. Chao, C.-I. Hsieh, and W.-H. Chang, “Optical characterization of two-dimensional photonic crystals based on spectroscopic ellipsometry with rigorous coupled-wave analysis,” Microelectron. Eng. 83(4-9), 1798–1804 (2006). [CrossRef]
  13. C.-W. Kuo, J.-Y. Shiu, and P. Chen, “Size- and shape-controlled fabrication of large-area periodic nanopillar arrays,” Chem. Mater. 15(15), 2917–2920 (2003). [CrossRef]
  14. C.-W. Kuo, J.-Y. Shiu, P. Chen, and G. A. Somorjai, “Fabrication of size-tunable large-area periodic silicon nanopillar arrays with sub-10nm resolution,” J. Phys. Chem. B 107(37), 9950–9953 (2003). [CrossRef]
  15. Y.-F. Chang, Q.-R. Chou, J.-Y. Lin, and C.-H. Lee, “Fabrication of high-aspect-ratio silicon nanopillar arrays with the conventional reactive ion etching technique,” Appl. Phys., A Mater. Sci. Process. 86(2), 193–196 (2006). [CrossRef]
  16. Z. Yu, H. Gao, W. Wu, H. Ge, and S. Y. Chou, “Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff,” J. Vac. Sci. Technol. B 21(6), 2874–2877 (2003). [CrossRef]
  17. A. A. Ayón, R. Braff, C. C. Lin, H. H. Sawin, and M. A. Schmidt, “Characterization of a time multiplexed inductively coupled plasma etcher,” J. Electrochem. Soc. 146(1), 339–349 (1999). [CrossRef]
  18. X. Wang, W. Zeng, G. Lu, O. L. Russo, and E. Eisenbraun, “High aspect ratio Bosch etching of sub-0.25 μm trenches for hyperintegration applications,” J. Vac. Sci. Technol. B 25(4), 1376–1381 (2007). [CrossRef]
  19. C.-H. Choi and C.-J. Kim, “Fabrication of a dense array of tall nanostructures over a large sample area with sidewall profile and tip sharpness control,” Nanotechnology 17(21), 5326–5333 (2006). [CrossRef]
  20. K. J. Morton, G. Nieberg, S. Bai, and S. Y. Chou, “Wafer-scale patterning of sub-40 nm diameter and high aspect ratio (>50:1) silicon pillar arrays by nanoimprint and etching,” Nanotechnology 19(34), 345301 (2008). [CrossRef] [PubMed]
  21. Y.-J. Hung, S.-L. Lee, and Y.-T. Pan, “Holographic realization of two-dimensional photonic crystal structures on silicon substrates,” Integrated Photonics and Nanophotonics Research and Applications (IPNRA’09), paper IWD5, Honolulu, Hawaii, USA (2009).
  22. Y.-J. Hung, S.-L. Lee, and Y.-T. Pan, “Photonic bandgap analysis of photonic crystal slabs with elliptical holes and their formation with laser holography,” J. Opt. 12(1), 015102 (2010). [CrossRef]
  23. J. D. Joannapolous, R. D. Meade, and J. N. Winn, “Photonic crystals – molding the flow of light,” (Princeton University Press, 1995)
  24. S. H. Zaidi, D. S. Ruby, and J. M. Gee, “Characterization of random reactive ion etched-textured silicon soar cells,” IEEE Trans. Electron. Dev. 48(6), 1200–1206 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited