OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 7 — Mar. 29, 2010
  • pp: 7019–7030

Polarized GaN-based LED with an integrated multi-layer subwavelength structure

Guiju Zhang, Chinhua Wang, Bing Cao, Zengli Huang, Jianfeng Wang, Baoshun Zhang, and Ke Xu  »View Author Affiliations

Optics Express, Vol. 18, Issue 7, pp. 7019-7030 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (515 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A novel type of GaN-based LED with a highly polarized output using an integrated multi-layer subwavelength grating structure is proposed. Characteristics of both optical transmission and polarization extinction ratio of the polarized GaN-based LED with three different multi-layer subwavelength structures are investigated. It is found that both TM transmission (TTM) and the extinction ratio(ER) of the LED output can be effectively enhanced by incorporating a dielectric transition layer between the metal grating and GaN substrate with a lower refractive index than that of the GaN substrate. Flat sensitivity of the TTM on the period, duty cycle of the metallic grating, and the wide range of operating wavelength have been achieved in contrast to the conventional sensitive behavior in single-layer metallic grating. Up to 0.75 high duty cycle of the metallic grating can be employed to achieve >60dB ER while TTM maintains higher than ~90%, which breaks the conventional limit of TTM and ER being always a pair of trade-off parameters. Typical optimized multilayer structures in terms of material, thickness, grating periods and duty cycle using MgF2 and ZnS, respectively, as the transition layers are obtained. The results provide guidance in designing, optimizing and fabricating the novel integrated GaN-based and polarized photonic devices.

© 2010 OSA

OCIS Codes
(230.3670) Optical devices : Light-emitting diodes
(260.5430) Physical optics : Polarization
(310.4165) Thin films : Multilayer design
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Optical Devices

Original Manuscript: December 16, 2009
Revised Manuscript: March 6, 2010
Manuscript Accepted: March 8, 2010
Published: March 22, 2010

Guiju Zhang, Chinhua Wang, Bing Cao, Zengli Huang, Jianfeng Wang, Baoshun Zhang, and Ke Xu, "Polarized GaN-based LED with an integrated multi-layer subwavelength structure," Opt. Express 18, 7019-7030 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. K. Cho, J. Jang, J. H. Choi, J. Choi, J. Kim, J. S. Lee, B. Lee, Y. H. Choe, K. D. Lee, S. H. Kim, K. Lee, S. K. Kim, and Y. H. Lee, “Light extraction enhancement from nano-imprinted photonic crystal GaN-based blue light-emitting diodes,” Opt. Express 14(19), 8654–8660 (2006). [CrossRef] [PubMed]
  2. K. Kojima, U. T. Schwarz, M. Funato, Y. Kawakami, S. Nagahama, and T. Mukai, “Optical gain spectra for near UV to aquamarine (Al,In)GaN laser diodes,” Opt. Express 15(12), 7730–7736 (2007). [CrossRef] [PubMed]
  3. H. G. Kim, M. G. Na, H. K. Kim, H. Y. Kim, J. H. Ryu, T. V. Cuong, and C. H. Hong, “Effect of periodic deflector embedded in InGaN/GaN light emitting diode,” Appl. Phys. Lett. 90, 314–316 (2007).
  4. X. H. Wang, W. Y. Fu, P. T. Lai, and H. W. Choi, “Evaluation of InGaN/GaN light-emitting diodes of circular geometry,” Opt. Express 17(25), 22311–22319 (2009). [CrossRef]
  5. J. G. Rivas, M. Kuttge, P. H. Bolivar, H. Kurz, and J. A. Sánchez-Gil, “Propagation of surface plasmon polaritons on semiconductor gratings,” Phys. Rev. Lett. 93(25), 256804 (2004). [CrossRef]
  6. C. Y. Chen, D. M. Yeh, Y. C. Lu, and C. C. Yang, “Dependence of resonant coupling between surface plasmons and an InGaN quantum well on metallic structure,” Appl. Phys. Lett. 89(20), 203113 (2006). [CrossRef]
  7. T. X. Lee, K. F. Gao, W. T. Chien, and C. C. Sun, “Light extraction analysis of GaN-based light-emitting diodes with surface texture and/or patterned substrate,” Opt. Express 15(11), 6670–6676 (2007). [CrossRef] [PubMed]
  8. C. Y. Wang, L. Y. Chen, C. P. Chen, Y. W. Cheng, M. Y. Ke, M. Y. Hsieh, H. M. Wu, L. H. Peng, and J. J. Huang, “GaN nanorod light emitting diode arrays with a nearly constant electroluminescent peak wavelength,” Opt. Express 16(14), 10549–10556 (2008). [CrossRef] [PubMed]
  9. J. Wang, S. Schablitsky, Z. Yu, W. Wu, and S. Y. Chou, “Fabrication of a new broadband TM-pass waveguide polarizer with a double-layer 190nm metal gratings using nanoimprint lithography,” J. Vac. Sci. Technol. B 17(6), 2957–2960 (1999). [CrossRef]
  10. Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86(24), 5601–5603 (2001). [CrossRef] [PubMed]
  11. J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, “30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89(14), 141105 (2006). [CrossRef]
  12. J. J. Wang, W. Zhang, X. Deng, J. Deng, F. Liu, P. Sciortino, and L. Chen, “High-performance nanowire-grid polarizers,” Opt. Lett. 30(2), 195–197 (2005). [CrossRef] [PubMed]
  13. Z. Wu, P. E. Powers, A. M. Sarangan, and Q. Zhan, “Optical characterization of wiregrid micropolarizers designed for infrared imaging polarimetry,” Opt. Lett. 33(15), 1653–1655 (2008). [CrossRef] [PubMed]
  14. I. Yamada, K. Kintaka, J. Nishii, S. Akioka, Y. Yamagishi, and M. Saito, “Mid-infrared wire-grid polarizer with silicides,” Opt. Lett. 33(3), 258–260 (2008). [CrossRef] [PubMed]
  15. W. L. Chang, P. H. Tsao, and P. K. Wei, “Sub-100 nm photolithography using TE-polarized waves in transparent nanostructures,” Opt. Lett. 32(1), 71–73 (2007). [CrossRef]
  16. L. Zhang, J. H. Teng, S. J. Chua, and E. A. Fitzgerald, “Linearly polarized light emission from InGaN light emitting diode with subwavelength metallic nanograting,” Appl. Phys. Lett. 95(26), 261110 (2009). [CrossRef]
  17. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A 3(11), 1780–1787 (1986). [CrossRef]
  18. S. Astilean, Ph. Lalanne, and M. Palamaru, “Light transmission through metallic channels much smaller than the wavelength,” Opt. Commun. 175(4-6), 265–273 (2000). [CrossRef]
  19. D. Kim, “Performance uniformity analysis of a wire-grid polarizer in imaging polarimetry,” Appl. Opt. 44(26), 5398–5402 (2005). [CrossRef] [PubMed]
  20. D. L. Brundrett, E. N. Glytsis, and T. K. Gaylord, “Homogeneous layer models for high-spatial-frequency dielectric surface-relief grating: conical diffraction and antireflection designs,” Appl. Opt. 33(13), 2695–2706 (1994). [CrossRef] [PubMed]
  21. R. E. Smith, M. E. Warren, J. R. Wendt, and G. A. Vawter, “Polarization-sensitive subwavelength antireflection surfaces on a semiconductor for 975 nm,” Opt. Lett. 21(15), 1201–1203 (1996). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited