OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 7 — Mar. 29, 2010
  • pp: 7064–7075

Nonparaxial analyses of radially polarized beams diffracted at a circular aperture

Xinting Jia, Youqing Wang, and Bo Li  »View Author Affiliations

Optics Express, Vol. 18, Issue 7, pp. 7064-7075 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (369 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



On the basis of the vectorial Rayleigh diffraction integral, the analytical expressions for the electromagnetic fields of the radially polarized beams diffracted at a circular aperture are derived, which helps us investigate the propagation properties of the apertured radially polarized beams in the nonparaxial and paraxial regimes. The unapertured and paraxial cases can be viewed as the special cases of the general result obtained in this paper. The analyses indicate that the nonparaxiality of the apertured radially polarized beams depends on the ratio of the waist width to the wavelength and the truncation parameter. In addition, the truncation parameter and the beam order have a great impact on the beam diffraction effect and the beam evolution behavior.

© 2010 OSA

OCIS Codes
(050.1220) Diffraction and gratings : Apertures
(260.2110) Physical optics : Electromagnetic optics
(260.5430) Physical optics : Polarization
(350.5500) Other areas of optics : Propagation

ToC Category:
Diffraction and Gratings

Original Manuscript: February 3, 2010
Revised Manuscript: March 11, 2010
Manuscript Accepted: March 12, 2010
Published: March 22, 2010

Xinting Jia, Youqing Wang, and Bo Li, "Nonparaxial analyses of radially polarized beams diffracted at a circular aperture," Opt. Express 18, 7064-7075 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Gori, “Polarization basis for vortex beams,” J. Opt. Soc. Am. A 18(7), 1612–1617 (2001). [CrossRef]
  2. Y. I. Salamin and C. H. Keitel, “Electron acceleration by a tightly focused laser beam,” Phys. Rev. Lett. 88(9), 095005 (2002). [CrossRef] [PubMed]
  3. Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12(15), 3377–3382 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-15-3377 . [CrossRef] [PubMed]
  4. K. S. Youngworth and T. G. Brown, “Inhomogeneous polarization in scanning optical microscopy,” Proc. SPIE 3919, 75–85 (2000). [CrossRef]
  5. I. Moshe, S. Jackel, and A. Meir, “Production of radially or azimuthally polarized beams in solid-state lasers and the elimination of thermally induced birefringence effects,” Opt. Lett. 28(10), 807–809 (2003). [CrossRef] [PubMed]
  6. V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32(13), 1455–1461 (1999). [CrossRef]
  7. M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process. 86(3), 329–334 (2007). [CrossRef]
  8. A. A. Tovar, “Production and propagation of cylindrical polarized Laguerre-Gaussian laser beams,” J. Opt. Soc. Am. A 15(10), 2705–2711 (1998). [CrossRef]
  9. M. A. Ahmed, J. Schulz, A. Voss, O. Parriaux, J. C. Pommier, and T. Graf, “Radially polarized 3kW beam from a CO2 laser with an intracavity resonant grating mirror,” Opt. Lett. 32(13), 1824–1826 (2007). [CrossRef] [PubMed]
  10. K. J. Moh, X. C. Yuan, J. Bu, R. E. Burge, and B. Z. Gao, “Generating radial or azimuthal polarization by axial sampling of circularly polarized vortex beams,” Appl. Opt. 46(30), 7544–7551 (2007). [CrossRef] [PubMed]
  11. T. Moser, H. Glur, V. Romano, F. Pigeon, O. Parriaux, M. A. Ahmed, and T. Graf, “Polarization-selective grating mirrors used in the generation of radial polarization,” Appl. Phys. B 80(6), 707–713 (2005). [CrossRef]
  12. G. MacHavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Spatially-variable retardation plate for efficient generation of radially- and azimuthally-polarization beams,” Opt. Commun. 281(4), 732–738 (2008). [CrossRef]
  13. D. Deng, “Nonparaxial propagation of radially polarized light beams,” J. Opt. Soc. Am. B 23(6), 1228–1234 (2006). [CrossRef]
  14. D. Deng, Q. Guo, L. Wu, and X. Yang, “Propagation of radially polarized elegant light beams,” J. Opt. Soc. Am. B 24(3), 636–643 (2007). [CrossRef]
  15. D. Deng and Q. Guo, “Analytical vectorial structure of radially polarized light beams,” Opt. Lett. 32(18), 2711–2713 (2007). [CrossRef] [PubMed]
  16. S. Yan and B. Yao, “Accurate description of a radially polarized Gaussian beam,” Phys. Rev. A 77(2), 023827 (2008). [CrossRef]
  17. S. Yan and B. Yao, “Description of a radially polarized Laguerre-Gauss beam beyond the paraxial approximation,” Opt. Lett. 32(22), 3367–3369 (2007). [CrossRef] [PubMed]
  18. R. K. Luneburg, Mathematical Theory of Optics (University of California Press, Berkeley, 1966).
  19. B. Lü and K. Duan, “Nonparaxial propagation of vectorial Gaussian beams diffracted at a circular aperture,” Opt. Lett. 28(24), 2440–2442 (2003). [CrossRef] [PubMed]
  20. K. Duan and B. Lü, “Nonparaxial analysis of far-field properties of Gaussian beams diffracted at a circular aperture,” Opt. Express 11(13), 1474–1480 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-13-1474 . [CrossRef] [PubMed]
  21. I. S. Gradshteyn, and I. M. Ryzhik, Table of Integrals, Series, and Products, (Academic Press, New York, 1994).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited