OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 7 — Mar. 29, 2010
  • pp: 7085–7091

Direct-bandgap luminescence at room-temperature from highly-strained Germanium nanocrystals

Latha Nataraj, Fan Xu, and Sylvain G. Cloutier  »View Author Affiliations

Optics Express, Vol. 18, Issue 7, pp. 7085-7091 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (234 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Efficient room-temperature luminescence at optical telecommunication wavelengths and originating from direct band-to-band recombination has been observed in tensile-strained germanium nanocrystals synthesized by mechanical grinding techniques. Selected area electron diffraction, micro-Raman and optical-absorption spectroscopy measurements indicate high tensile-strains while combined photoluminescence spectroscopy, excitation-power evolution and time-resolved measurements suggest direct band-to-band recombination. Such band-engineered germanium nanocrystals offer great possibilities for silicon-photonics integration due to their superb light-emission properties, facile fabrication and compatibility with standard microelectronic processes.

© 2010 OSA

OCIS Codes
(160.4760) Materials : Optical properties
(160.6000) Materials : Semiconductor materials
(260.3800) Physical optics : Luminescence
(300.6250) Spectroscopy : Spectroscopy, condensed matter
(160.4236) Materials : Nanomaterials

ToC Category:

Original Manuscript: January 28, 2010
Revised Manuscript: March 12, 2010
Manuscript Accepted: March 14, 2010
Published: March 23, 2010

Latha Nataraj, Fan Xu, and Sylvain G. Cloutier, "Direct-bandgap luminescence at room-temperature from highly-strained Germanium nanocrystals," Opt. Express 18, 7085-7091 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Cullis and L. Canham, “Visible light emission due to quantum size effects in highly porous crystalline silicon,” Nature 353(6342), 335–338 (1991). [CrossRef]
  2. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000). [CrossRef] [PubMed]
  3. W. L. Wilson, P. F. Szajowski, and L. Brus, “Measurements of alloy composition and strain in thin GexSi1−x layers,” Science 262, 1242–1244 (1993). [CrossRef] [PubMed]
  4. Z. Lu, D. J. Lockwood, and J. Baribeau, “Quantum confinement and light emission in SiO2/Si superlattices,” Nature 378(6554), 258–260 (1995). [CrossRef]
  5. H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005). [CrossRef] [PubMed]
  6. O. Boyraz and B. Jalali, “Demonstration of a silicon Raman laser,” Opt. Express 12(21), 5269–5273 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-21-5269 . [CrossRef] [PubMed]
  7. H. Enner, G. Pomrenke, A. Axmann, K. Eisele, W. Haydl, and J. Schneider, “1.54-µm electroluminescence of erbium-doped silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 46(4), 381–383 (1985). [CrossRef]
  8. B. Min, T. J. Kippenberg, L. Yang, K. J. Vahala, J. Kalkman, and A. Polman, “Erbium-implanted high-Q silica toroidal microcavity laser on a silicon chip,” Phys. Rev. A 70(3), 033803 (2004). [CrossRef]
  9. S. G. Cloutier, P. A. Kossyrev, and J. M. Xu, “Optical gain and stimulated emission in periodic nanopatterned crystalline silicon,” Nat. Mater. 4(12), 887–891 (2005). [CrossRef] [PubMed]
  10. E. Rotem, J. M. Shainline, and J. M. Xu, “Electroluminescence of nanopatterned silicon with carbon implantation and solid phase epitaxial regrowth,” Opt. Express 15(21), 14099–14106 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-21-14099 . [CrossRef] [PubMed]
  11. D. Recht, F. Capasso, and M. J. Aziz, “On the temperature dependence of point-defect-mediated luminescence in silicon,” Appl. Phys. Lett. 94(25), 251113 (2009). [CrossRef]
  12. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-20-9203 . [CrossRef] [PubMed]
  13. J. Liu, X. Sun, D. Pan, X. Wang, L. C. Kimerling, T. L. Koch, and J. Michel, “Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si,” Opt. Express 15(18), 11272–11277 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-18-11272 . [CrossRef] [PubMed]
  14. M. Zacharias, J. Bläsing, J. Christen, P. Veit, B. Dietrich, and D. Bimberg, “Formation of Ge nanocrystals with sharp size distribution: structural and optical characterization,” Superlattices Microstruct. 18(2), 139–146 (1995). [CrossRef]
  15. Y. Maeda, N. Tsukamoto, Y. Yazawa, Y. Kanemitsu, and Y. Masumoto, “Visible photoluminescence of Ge microcrystals embedded in SiO2 glassy matrices,” Appl. Phys. Lett. 59(24), 3168–3170 (1991). [CrossRef]
  16. W. K. Choi, V. Ng, S. P. Ng, H. H. Thio, Z. X. Shen, and W. S. Li, “Raman characterization of germanium nanocrystals in amorphous silicon oxide films synthesized by rapid thermal annealing,” J. Appl. Phys. 86(3), 1398–1403 (1999). [CrossRef]
  17. S. Takeoka, M. Fujii, S. Hayashi, and K. Yamamoto, “Size-dependent near-infrared photoluminescence from Ge nanocrystals embedded in SiO2 matrices,” Phys. Rev. B 58(12), 7921–7925 (1998). [CrossRef]
  18. Y. Kanemitsu, K. Masuda, M. Yamamoto, K. Kajiyama, and T. Kushida, “Near-infrared photoluminescence from Ge nanocrystals in SiO2 matrices,” J. Lumin. 87–89, 457–459 (2000). [CrossRef]
  19. Y. Kanemitsu, H. Uto, Y. Masumoto, and Y. Maeda, “On the origin of visible photoluminescence in nanometer-size Ge crystallites,” Appl. Phys. Lett. 61(18), 2187–2190 (1992). [CrossRef]
  20. D. C. Paine, C. Caragianis, T. Y. Kim, Y. Shigesato, and T. Ishahara, “Visible photoluminescence from nanocrystalline Ge formed by H2 reduction of Si0.6Ge0.4O2,” Appl. Phys. Lett. 62(22), 2842–2844 (1993). [CrossRef]
  21. S. Okamoto and Y. Kanemitsu, “Photoluminescence properties of surface-oxidized Ge nanocrystals: Surface localization of excitons,” Phys. Rev. B 54(23), 16421–16424 (1996). [CrossRef]
  22. G. Kartopu, A. V. Sapelkin, V. A. Karavanskii, U. Serincan, and R. Turan, “Structural and optical properties of porous nanocrystalline Ge,” J. Appl. Phys. 103(11), 113518 (2008). [CrossRef]
  23. H. P. Wu, M. Y. Ge, C. W. Cao, Y. W. Wang, Y. W. Zeng, L. N. Wang, G. Q. Zhang, and J. Z. Jiang, “Blue emission of Ge nanocrystals prepared by thermal decomposition,” Nanotechnology 17(21), 5339–5343 (2006). [CrossRef]
  24. Q. Xiao and H. Tu, “Ge–Si system nanoclusters in Si matrix formed by solid-phase epitaxy,” Appl. Phys. Lett. 86(20), 201914 (2005). [CrossRef]
  25. H. Yang, X. Wang, H. Shi, S. Xie, F. Wang, X. Gu, and X. Yao, “Photoluminescence of Ge nanoparticles embedded in SiO2 glasses fabricated by a sol–gel method,” Appl. Phys. Lett. 81(27), 5144–5146 (2002). [CrossRef]
  26. E. Palange, G. Capelli, L. Di Gaspare, and F. Evangelisti, “Atomic force microscopy and photoluminescence study of Ge layers and self-organized Ge quantum dots on Si(100),” Appl. Phys. Lett. 68(21), 2982–2984 (1996). [CrossRef]
  27. S. W. Lee, P. S. Chen, S. L. Cheng, M. H. Lee, H. T. Chang, C.-H. Lee, and C. W. Liu, “Modified growth of Ge quantum dots using C2H4 mediation by ultra-high vacuum chemical vapor deposition,” Appl. Surf. Sci. 254(19), 6261–6264 (2008). [CrossRef]
  28. N. Sustersic, L. Nataraj, C. Weiland, M. Coppinger, M. V. Shaleev, A. V. Novikov, R. Opila, S. G. Cloutier, and J. Kolodzey, “High power N-face GaN high electron mobility transistors grown by molecular beam epitaxy with optimization of AlN nucleation,” Appl. Phys. Lett. 94, 183103 (2009). [CrossRef]
  29. P. K. Giri, “Strain analysis on freestanding germanium nanocrystals,” J. Phys. D Appl. Phys. 42(24), 245402 (2009). [CrossRef]
  30. D. J. Friedman, M. Meghelli, B. D. Parker, J. Yang, H. A. Ainspan, A. V. Rylyakov, Y. H. Kwark, M. B. Ritter, L. Shan, S. J. Zier, M. Sorna, and M. Soyuer, “SiGe BiCMOS integrated circuits for high-speed serial communication links,” IBM J. Res. Develop. 47, 259–282 (2003). [CrossRef]
  31. P. Marin, A. Hernando, M. Lopez, T. Kulik, L. K. Varga, and G. Hadjipanayis, “Influence of mechanical grinding on the structure and magnetic properties of FeCuNbSiB material,” J. Magn. Magn. Mater. 272–276, E1131–E1133 (2004). [CrossRef]
  32. M. Lopez, P. Marin, P. Agudo, I. Carabias, J. de la Venta, and A. Hernando, “Nanocrystalline FeSiBNbCu alloys: Differences between mechanical and thermal crystallization process in amorphous precursors,” J. Alloy. Comp. 434–435, 199–202 (2007). [CrossRef]
  33. G. F. Goya, “Nanocrystalline CuFe2O4 obtained by mechanical grinding,” J. Mater. Sci. Lett. 16(7), 563–565 (1997). [CrossRef]
  34. C. C. Koch and Y. S. Cho, “Nanocrystals by high energy ball milling,” Nanostructured Materials 1(3), 207–212 (1992). [CrossRef]
  35. V. Svrcek, J.-L. Rehspringer, E. Gaffet, A. Slaoui, and J.-C. Muller, “Unaggregated silicon nanocrystals obtained by ball milling,” J. Cryst. Growth 275(3-4), 589–597 (2005). [CrossRef]
  36. Q. Li, C. Liu, Z. Liu, and Q. Gong, “Broadband optical limiting and two-photon absorption properties of colloidal GaAs nanocrystals,” Opt. Express 13(6), 1833–1838 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-6-1833 . [CrossRef] [PubMed]
  37. G. L. Tan and X. F. Yu, “Capping the Ball-Milled CdSe Nanocrystals for Light Excitation,” J. Phys. Chem. C 113(20), 8724–8729 (2009). [CrossRef]
  38. A. Paul, M. Luisier, R. Kim, M. McLennan, M. Lundstrom, and G. Klimeck, “Band Structure Lab” (2006), http://hdl.handle.net/ 10254/nanohub-r1308.6 .
  39. G. Klimeck, M. Korkusinski, F. Saied, H. Xu, S. Lee, M. Sayeed, and S. Goasguen, “Development of a Nanoelectronic 3-D (NEMO 3-D) Simulator for Multimillion Atom Simulations and Its Application to Alloyed Quantum Dots,” Comput. Model. Eng. Sci. 3, 601–642 (2002).
  40. X. Sun, J. Liu, L. C. Kimerling, and J. Michel, “Room-temperature direct bandgap electroluminesence from Ge-on-Si light-emitting diodes,” Opt. Lett. 34(8), 1198–1200 (2009). [CrossRef] [PubMed]
  41. J. C. Tsang, P. M. Mooney, F. Dacol, and J. O. Chu, “Measurements of alloy composition and strain in thin GexSi1−x layers,” J. Appl. Phys. 75(12), 8098–8108 (1994). [CrossRef]
  42. I. De Wolf, “Micro-Raman spectroscopy to study local mechanical stress in silicon integrated circuits,” Semicond. Sci. Technol. 11(2), 139–154 (1996). [CrossRef]
  43. T. Tezuka, N. Sugiyama, and S. Takagi, “Fabrication of strained Si on an ultrathin SiGe-on-insulator virtual substrate with a high-Ge fraction,” Appl. Phys. Lett. 79(12), 1798–1800 (2001). [CrossRef]
  44. J. Camassel, L. A. Falkovsky, and N. Planes, “Photoluminescence properties of surface-oxidized Ge nanocrystals: Surface localization of excitons,” Phys. Rev. B 63, 035309 (2000). [CrossRef]
  45. N. H. Nickel, P. Lengsfdeld, and I. Sieber, “Raman spectroscopy of heavily doped polycrystalline silicon thin films,” Phys. Rev. B 61(23), 15558–15561 (2000). [CrossRef]
  46. S. G. Cloutier, R. S. Guico, and J. M. Xu, “Phonon localization in periodic uniaxially nanostructured silicon,” Appl. Phys. Lett. 87(22), 222104 (2005). [CrossRef]
  47. S. G. Cloutier, C.-H. Hsu, P. A. Kossyrev, and J. Xu, “Radiative recombination enhancement in silicon via phonon localization and selection-rule breaking,” Adv. Mater. 18, 841–844 (2006). [CrossRef]
  48. B. V. Kamenev, L. Tsybeskov, J.-M. Baribeau, and D. J. Lockwood, “Coexistence of fast and slow luminescence in three-dimensional Si/Si1−xGex nanostructures,” Phys. Rev. B 72(19), 193306 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited