OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 7 — Mar. 29, 2010
  • pp: 7121–7130

Enhancement of the beam quality of non-uniform output slab laser amplifier with a 39-actuator rectangular piezoelectric deformable mirror

Ping Yang, Yu Ning, Xiang Lei, Bing Xu, Xinyang Li, Lizhi Dong, Hu Yan, Wenjing Liu, Wenhan Jiang, Lei Liu, Chao Wang, Xingbo Liang, and Xiaojun Tang  »View Author Affiliations


Optics Express, Vol. 18, Issue 7, pp. 7121-7130 (2010)
http://dx.doi.org/10.1364/OE.18.007121


View Full Text Article

Enhanced HTML    Acrobat PDF (256 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a slab laser amplifier beam cleanup experimental system based on a 39-actuator rectangular piezoelectric deformable mirror. Rather than use a wave-front sensor to measure distortions in the wave-front and then apply a conjugation wave-front for compensating them, the system uses a Stochastic Parallel Gradient Descent algorithm to maximize the power contained within a far-field designated bucket. Experimental results demonstrate that at the output power of 335W, more than 30% energy concentrates in the 1x diffraction-limited area while the beam quality is enhanced greatly.

© 2010 OSA

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics

ToC Category:
Adaptive Optics

History
Original Manuscript: January 12, 2010
Revised Manuscript: February 24, 2010
Manuscript Accepted: March 1, 2010
Published: March 23, 2010

Citation
Ping Yang, Yu Ning, Xiang Lei, Bing Xu, Xinyang Li, Lizhi Dong, Hu Yan, Wenjing Liu, Wenhan Jiang, Lei Liu, Chao Wang, Xingbo Liang, and Xiaojun Tang, "Enhancement of the beam quality of non-uniform output slab laser amplifier with a 39-actuator rectangular piezoelectric deformable mirror," Opt. Express 18, 7121-7130 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-7-7121


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. D. Patel, D. G. Harris, and C. E. Turner, “Improving the beam quality of a high power Yb:YAG rod laser,” Proc. SPIE 6100, 610018–610021 (2006).
  2. H. Bruesselbach and D. S. Sumida, “A 2.65-kW Yb:YAG single rod laser,” IEEE J. Sel. Top. Quantum Electron. 11(3), 600–603 (2005).
  3. A. Giesen, H. H¨ugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state-lasers,” Appl. Phys. B 58, 365–372 (1994).
  4. G. D. Goodno, C. P. Asman, J. Anderegg, S. Brosnan, E. C. Cheung, D. Hammons, H. Injeyan, H. Komine, W. H. Long, M. McClellan, S. J. McNaught, S. Redmond, R. Simpson, J. Sollee, M. Weber, S. B. Weiss, and M. Wickham, “Brightness-Scaling Potential of Actively Phase-Locked Solid-State Laser Arrays,” IEEE J. Sel. Top. Quantum Electron. 13(3), 460–472 (2007).
  5. R. J. St. Pierre, D. W. Mordaunt, H. Injeyan, J. G. Berg, R. C. Hilyard, M. E. Weber, M. G. Wickham, G. M. Harpole, and R. Senn, “Diode array pumped kilowatt laser,” IEEE J. Sel. Top. Quantum Electron. 3(1), 53–58 (1997).
  6. H. Zimer, K. Albers, and U. Wittrock, “Grazing-incidence YVO4-Nd:YVO4 composite thin slab laser with low thermo-optic aberrations,” Opt. Lett. 29(23), 2761–2763 (2004). [PubMed]
  7. C. E. Max, D. T. Gavel, and S. S. Olivier, “Near infra-red astronomy with adaptive optics and laser guide stars at the keck observatory,” Proc. SPIE 2534, 412–422 (1995).
  8. K. N. LaFortune, R. L. Hurd, E. M. Johanssob, C. B. Dane, S. N. Fochs, and J. M. Brase, “Intracavity adaptive correction of a 10 kW, solid-state, heat-capacity laser,” Proc. SPIE 5333, 53–61 (2004).
  9. G. D. Goodno, H. Komine, S. J. McNaught, S. B. Weiss, S. Redmond, W. Long, R. Simpson, E. C. Cheung, D. Howland, P. Epp, M. Weber, M. McClellan, J. Sollee, and H. Injeyan, “Coherent combination of high-power, zigzag slab lasers,” Opt. Lett. 31(9), 1247–1249 (2006). [PubMed]
  10. J. Notaras and C. Paterson, “Point-diffraction interferometer for atmospheric adaptive optics in strong scintillation,” Opt. Commun. 281(3), 360–367 (2008).
  11. J. Sheldakova, A. Kudryashov, V. Samarkin, and V. Zavalova, “Problem of Shack-Hartmann wavefront sensor and Interferometer use while testing strongly distorted laser wavefront, ” Proc. SPIE 6872, 68720B–1-68720B–6(2008)
  12. W. Lubeigt, M. Griffith, L. Laycock, and D. Burns, “Reduction of the time-to-full-brightness in solid-state lasers using intra-cavity adaptive optics,” Opt. Express 17(14), 12057–12069 (2009). [PubMed]
  13. W. Lubeigt, G. J. Valentine, and D. Burns, “Enhancement of laser performance using an intracavity deformable membrane mirror,” Opt. Express 16(15), 10943–10955 (2008). [PubMed]
  14. P. Yang, Y. Liu, W. Yang, M. W. Ao, S. J. Hu, B. Xu, and W. H. Jiang, “Adaptive mode optimization of a continuous wave solid-state laser using an intracavity piezoelectric deformable mirror,” Opt. Commun. 278(2), 377–381 (2007).
  15. M. J. Booth, “Wave front sensor-less adaptive optics: a model-based approach using sphere packings,” Opt. Express 14(4), 1339–1352 (2006). [PubMed]
  16. W. Lubeigt, S. P. Poland, G. J. Valentine, A. J. Wright, J. M. Girkin, and D. Burns, “Search-based active optic systems for aberration correction in time-independent applications,” Appl. Opt. 49(3), 307–314 (2010). [PubMed]
  17. X. J. Rao, N. Ling, and W. H. Jiang, “Experimental of measuring influence function of deformable mirror using digital interferometer,” Acta Opt. Sin. 15, 1446–1451 (1995) (in Chinese).
  18. M. A. Vorontsov, G. W. Carhart, and J. C. Ricklin, “Adaptive phase-distortion correction based on parallel gradient-descent optimization,” Opt. Lett. 22(12), 907–909 (1997). [PubMed]
  19. L. Liu and M. A. Vorontsov, “Phase-Locking of Tiled Fiber Array using SPGD Feedback Controller,” Proc. SPIE 5895, 58950P–1-58950P–9 (2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited