OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 7 — Mar. 29, 2010
  • pp: 7150–7156

Self-phase-modulation based all-optical regeneration of PDM signals using a single section of highly-nonlinear fiber

A.-L. Yi, L.-S. Yan, B. Luo, W. Pan, J. Ye, and J. Leuthold  »View Author Affiliations


Optics Express, Vol. 18, Issue 7, pp. 7150-7156 (2010)
http://dx.doi.org/10.1364/OE.18.007150


View Full Text Article

Enhanced HTML    Acrobat PDF (1428 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate simultaneous self-phase-modulation-based 2R regeneration of 2 × 10.65-Gb/s polarization-division-multiplexed (PDM) signals using a single section of highly nonlinear fiber (HNLF). Mitigation of inter-channel nonlinearities is achieved through a bidirectional configuration, rejecting of backward Stimulated Brillouin Scattering noise is obtained by signal re-polarizing before the offset filter and putting the center wavelength of filter at the short wavelength side of the signal. The power penalty improvement up to 2.0 dB for two PDM signals at 10−9 BER is achieved.

© 2010 OSA

OCIS Codes
(060.2630) Fiber optics and optical communications : Frequency modulation
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: January 26, 2010
Revised Manuscript: March 9, 2010
Manuscript Accepted: March 17, 2010
Published: March 23, 2010

Citation
A.-L. Yi, L.-S. Yan, B. Luo, W. Pan, J. Ye, and J. Leuthold, "Self-phase-modulation based all-optical regeneration of PDM signals using a single section of highly-nonlinear fiber," Opt. Express 18, 7150-7156 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-7-7150


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. V. Mamyshev, “All-optical data regeneration based on self-phase modulation effect,” 1998 European Conference on Optical Communications, 475 (1998).
  2. M. Jinno and M. Abe, “All-optical regenerator based on nonlinear fiber Sagnac interferometer,” Electron. Lett. 28(14), 1350–1352 (1992). [CrossRef]
  3. Y. Su, G. Raybon, R. J. Essiambre, and T.-H. Her, “All-optical 2R regeneration of 40-Gb/s signal impaired by intrachannel four-wave mixing,” IEEE Photon. Technol. Lett. 15(2), 350–352 (2003). [CrossRef]
  4. N. Yoshikane, I. Morita, and N. Edagawa, “Improvement of dispersion tolerance by SPM-based all-optical reshaping in receiver,” IEEE Photon. Technol. Lett. 15(1), 111–113 (2003). [CrossRef]
  5. K. Croussore, I. Kim, C. Kim, Y. Han, and G. Li, “Phase-and-amplitude regeneration of differential phase-shift keyed signals using a phase-sensitive amplifier,” Opt. Express 14(6), 2085–2094 (2006). [CrossRef] [PubMed]
  6. M. Matsuura and N. Kishi, “Wideband wavelength-flexible all-optical signal regeneration using gain-band tunable Raman amplification and self-phase-modulation-based spectral filtering,” Opt. Lett. 34(16), 2420–2422 (2009). [CrossRef] [PubMed]
  7. M. Matsumoto and O. Leclerc, “Analysis of 2R optical regenerator utilizing self-phase-modulation in highly nonlinear fiber,” Electron. Lett. 38(12), 576–577 (2002). [CrossRef]
  8. T.-H. Her, G. Raybon, and C. Headley, “Optimization of pulse regeneration at 40 Gb/s based on spectral filtering of self-phase modulation in fiber,” IEEE Photon. Technol. Lett. 16(1), 200–202 (2004). [CrossRef]
  9. A. G. Striegler and B. Schmauss, “Analysis and optimization of SPM-based 2R signal regeneration at 40 gb/s,” J. Lightwave Technol. 24(7), 2835–2843 (2006). [CrossRef]
  10. L. Provost, F. Parmigiani, C. Finot, K. Mukasa, P. Petropoulos, and D. J. Richardson, “Analysis of a two-channel 2R all-optical regenerator based on a counter-propagating configuration,” Opt. Express 16(3), 2264–2275 (2008). [CrossRef] [PubMed]
  11. L. Provost, F. Parmigiani, P. Petropoulos, and D. J. Richardson, “Investigation of simultaneous 2R regeneration of two 40-Gb/s channels in a single optical fiber,” IEEE Photon. Technol. Lett. 20(4), 270–272 (2008). [CrossRef]
  12. C. Kouloumentas, P. Vorreau, L. Provost, P. Petropoulos, W. Freude, J. Leuthold, and I. Tomkos, “All-fiberized dispersion-managed multichannel regeneration at 43 Gb/s,” IEEE Photon. Technol. Lett. 20(22), 1854–1856 (2008). [CrossRef]
  13. N. S. M. Shah and M. Matsumoto, “2R regeneration of time-interleaved multiwavelength signals based on higher order four-wave mixing in a fiber,” IEEE Photon. Technol. Lett. 22(1), 27–29 (2010). [CrossRef]
  14. J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, Y. G. Han, S. B. Lee, and K. Kikuchi, “Output performance investigation of self-phase-modulation-based 2R regenerator using bismuth oxide nonlinear fiber,” IEEE Photon. Technol. Lett. 18(12), 1296–1298 (2006). [CrossRef]
  15. M. Matsumoto, “Efficient all-optical 2R regeneration using self-phase modulation in bidirectional fiber configuration,” Opt. Express 14(23), 11018–11023 (2006). [CrossRef] [PubMed]
  16. L. A. Provost, C. Finot, P. Petropoulos, K. Mukasa, and D. J. Richardson, “Design scaling rules for 2R-optical self-phase modulation-based regenerators,” Opt. Express 15(8), 5100–5113 (2007). [CrossRef] [PubMed]
  17. F. Parmigiani, P. Vorreau, L. Provost, K. Mukasa, P. Petropoulos, D. J. Richardson, W. Freude, and J. Leuthold, “2R Regeneration of two 130 Gbit/s Channels within a Single Fiber,” in Proceedings OFC 2009, paper JThA56, (2009).
  18. M. Vasilyev and T. I. Lakoba, “All-optical multichannel 2R regeneration in a fiber-based device,” Opt. Lett. 30(12), 1458–1460 (2005). [CrossRef] [PubMed]
  19. M. I. Hayee, M. C. Cardakli, A. B. Sahin, and A. E. Willner, “Doubling of bandwidth utilization using two orthogonal polarizations and power unbalancing in a polarization-division-multiplexing scheme,” IEEE Photon. Technol. Lett. 13(8), 881–883 (2001). [CrossRef]
  20. J. Yu, M.-F. Huang, and G.-K. Chang, “Polarization insensitive wavelength conversion for 4x112Gbit/s polarization multiplexing RZ-QPSK signals,” Opt. Express 16(26), 21161–21169 (2008). [CrossRef] [PubMed]
  21. P. Martelli, P. Boffi, M. Ferrario, L. Marazzi, P. Parolari, R. Siano, V. Pusino, P. Minzioni, I. Cristiani, C. Langrock, M. M. Fejer, M. Martinelli, and V. Degiorgio, “All-optical wavelength conversion of a 100-Gb/s polarization-multiplexed signal,” Opt. Express 17(20), 17758–17763 (2009). [CrossRef] [PubMed]
  22. J. Lu, L. Chen, Z. Dong, Z. Cao, and S. Wen, “Polarization insensitive wavelength conversion based on orthogonal pump four-wave mixing for polarization multiplexing signal in high-nonlinear fiber,” J. Lightwave Technol. 27(24), 5767–5774 (2009). [CrossRef]
  23. M. O. van Deventer and A. J. Boot, “Polarization properties of Stimulated Brillouin Scattering in single-mode fibers,” J. Lightwave Technol. 12(4), 585–590 (1994). [CrossRef]
  24. M. Martinelli, P. Martelli, and S. M. Pietralunga, “Polarization stabilization in optical communications systems,” J. Lightwave Technol. 24(11), 4172–4183 (2006). [CrossRef]
  25. A. H. Gnauck, G. Charlet, P. Tran, P. J. Winzer, C. R. Doerr, J. C. Centanni, E. C. Burrows, T. Kawanishi, T. Sakamoto, and K. Higuma, “25.6-Tb/s WDM transmission of polarization-multiplexed RZ-DQPSK signals,” J. Lightwave Technol. 26(1), 79–84 (2008). [CrossRef]
  26. M. Matsumoto and Y. Morioka, “Fiber-based all-optical regeneration of DPSK signals degraded by transmission in a fiber,” Opt. Express 17(8), 6913–6919 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited