OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 7 — Mar. 29, 2010
  • pp: 7210–7218

High spatiotemporal resolution imaging of fast intrinsic optical signals activated by retinal flicker stimulation

Yang-Guo Li, Qiu-Xiang Zhang, Lei Liu, Franklin R. Amthor, and Xin-Cheng Yao  »View Author Affiliations


Optics Express, Vol. 18, Issue 7, pp. 7210-7218 (2010)
http://dx.doi.org/10.1364/OE.18.007210


View Full Text Article

Enhanced HTML    Acrobat PDF (720 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

High resolution monitoring of stimulus-evoked retinal neural activities is important for understanding retinal neural mechanisms, and can be a powerful tool for retinal disease diagnosis and treatment outcome evaluation. Fast intrinsic optical signals (IOSs), which have the time courses comparable to that of electrophysiological activities in the retina, hold the promise for high resolution imaging of retinal neural activities. However, application of fast IOS imaging has been hindered by the contamination of slow, high magnitude optical responses associated with transient hemodynamic and metabolic changes. In this paper we demonstrate the feasibility of separating fast retinal IOSs from slow optical responses by combining flicker stimulation and dynamic (temporal) differential image processing. A near infrared flood-illumination microscope equipped with a high-speed (1000 Hz) digital camera was used to conduct concurrent optical imaging and ERG measurement of isolated frog retinas. High spatiotemporal resolution imaging revealed that fast IOSs could follow flicker frequency up to at least 6 Hz. Comparable time courses of fast IOSs and ERG kinetics provide evidence that fast IOSs are originated from stimulus activated retinal neurons.

© 2010 OSA

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(330.4270) Vision, color, and visual optics : Vision system neurophysiology
(330.5310) Vision, color, and visual optics : Vision - photoreceptors
(330.5380) Vision, color, and visual optics : Physiology

ToC Category:
Vision, Color, and Visual Optics

History
Original Manuscript: December 16, 2009
Revised Manuscript: February 11, 2010
Manuscript Accepted: February 23, 2010
Published: March 24, 2010

Virtual Issues
Vol. 5, Iss. 7 Virtual Journal for Biomedical Optics

Citation
Yang-Guo Li, Qiu-Xiang Zhang, Lei Liu, Franklin R. Amthor, and Xin-Cheng Yao, "High spatiotemporal resolution imaging of fast intrinsic optical signals activated by retinal flicker stimulation," Opt. Express 18, 7210-7218 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-7-7210


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. W. Nickells, “Ganglion cell death in glaucoma: from mice to men,” Vet. Ophthalmol. 10(s1Suppl 1), 88–94 (2007). [CrossRef] [PubMed]
  2. R. S. Harwerth and H. A. Quigley, “Visual field defects and retinal ganglion cell losses in patients with glaucoma,” Arch. Ophthalmol. 124(6), 853–859 (2006). [CrossRef] [PubMed]
  3. B. Meyer-Rüsenberg, M. Pavlidis, T. Stupp, and S. Thanos, “Pathological changes in human retinal ganglion cells associated with diabetic and hypertensive retinopathy,” Graefes Arch. Clin. Exp. Ophthalmol. 245(7), 1009–1018 (2007). [CrossRef]
  4. Y. W. Qin, G. Z. Xu, and W. J. Wang, “Dendritic abnormalities in retinal ganglion cells of three-month diabetic rats,” Curr. Eye Res. 31(11), 967–974 (2006). [CrossRef] [PubMed]
  5. R. E. Hogg and U. Chakravarthy, “Visual function and dysfunction in early and late age-related maculopathy,” Prog. Retin. Eye Res. 25(3), 249–276 (2006). [CrossRef] [PubMed]
  6. H. P. Scholl and E. Zrenner, “Electrophysiology in the investigation of acquired retinal disorders,” Surv. Ophthalmol. 45(1), 29–47 (2000). [CrossRef] [PubMed]
  7. D. C. Hood, J. G. Odel, C. S. Chen, and B. J. Winn, “The multifocal electroretinogram,” J. Neuroophthalmol. 23(3), 225–235 (2003). [PubMed]
  8. D. C. Hood, “Assessing retinal function with the multifocal technique,” Prog. Retin. Eye Res. 19(5), 607–646 (2000). [CrossRef] [PubMed]
  9. B. J. Baker, H. Lee, V. A. Pieribone, L. B. Cohen, E. Y. Isacoff, T. Knopfel, and E. K. Kosmidis, “Three fluorescent protein voltage sensors exhibit low plasma membrane expression in mammalian cells,” J. Neurosci. Methods 161(1), 32–38 (2007). [CrossRef]
  10. M. Djurisic, M. Zochowski, M. Wachowiak, C. X. Falk, L. B. Cohen, and D. Zecevic, “Optical monitoring of neural activity using voltage-sensitive dyes,” Methods Enzymol. 361, 423–451 (2003). [CrossRef] [PubMed]
  11. L. B. Cohen, R. D. Keynes, and B. Hille, “Light scattering and birefringence changes during nerve activity,” Nature 218(5140), 438–441 (1968). [CrossRef] [PubMed]
  12. I. Tasaki, A. Watanabe, R. Sandlin, and L. Carnay, “Changes in fluorescence, turbidity, and birefringence associated with nerve excitation,” Proc. Natl. Acad. Sci. U.S.A. 61(3), 883–888 (1968). [CrossRef] [PubMed]
  13. K. P. Hofmann, R. Uhl, W. Hoffmann, and W. Kreutz, “Measurements on fast light-induced light-scattering and -absorption changes in outer segments of vertebrate light sensitive rod cells,” Biophys. Struct. Mech. 2(1), 61–77 (1976). [CrossRef] [PubMed]
  14. H. Kühn, N. Bennett, M. Michel-Villaz, and M. Chabre, “Interactions between photoexcited rhodopsin and GTP-binding protein: kinetic and stoichiometric analyses from light-scattering changes,” Proc. Natl. Acad. Sci. U.S.A. 78(11), 6873–6877 (1981). [CrossRef] [PubMed]
  15. M. Michel-Villaz, A. Brisson, Y. Chapron, and H. Saibil, “Physical analysis of light-scattering changes in bovine photoreceptor membrane suspensions,” Biophys. J. 46(5), 655–662 (1984). [CrossRef] [PubMed]
  16. H. H. Harary, J. E. Brown, and L. H. Pinto, “Rapid light-induced changes in near infrared transmission of rods in Bufo marinus,” Science 202(4372), 1083–1085 (1978). [CrossRef] [PubMed]
  17. D. R. Pepperberg, M. Kahlert, A. Krause, and K. P. Hofmann, “Photic modulation of a highly sensitive, near-infrared light-scattering signal recorded from intact retinal photoreceptors,” Proc. Proc. Natl. Acad. Sci. 85(15), 5531–5535 (1988). [CrossRef]
  18. X. C. Yao, A. Yamauchi, B. Perry, and J. S. George, “Rapid optical coherence tomography and recording functional scattering changes from activated frog retina,” Appl. Opt. 44(11), 2019–2023 (2005). [CrossRef] [PubMed]
  19. K. Bizheva, R. Pflug, B. Hermann, B. Povazay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, “Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 5066–5071 (2006). [CrossRef] [PubMed]
  20. V. J. Srinivasan, M. Wojtkowski, J. G. Fujimoto, and J. S. Duker, “In vivo measurement of retinal physiology with high-speed ultrahigh-resolution optical coherence tomography,” Opt. Lett. 31(15), 2308–2310 (2006). [CrossRef] [PubMed]
  21. V. J. Srinivasan, Y. Chen, J. S. Duker, and J. G. Fujimoto, “In vivo functional imaging of intrinsic scattering changes in the human retina with high-speed ultrahigh resolution OCT,” Opt. Express 17(5), 3861–3877 (2009). [CrossRef] [PubMed]
  22. K. Grieve and A. Roorda, “Intrinsic signals from human cone photoreceptors,” Invest. Ophthalmol. Vis. Sci. 49(2), 713–719 (2008). [CrossRef] [PubMed]
  23. R. S. Jonnal, J. Rha, Y. Zhang, B. Cense, W. H. Gao, and D. T. Miller, “In vivo functional imaging of human cone photoreceptors,” Opt. Express 15(24), 16141–16160 (2007). [CrossRef] [PubMed]
  24. D. A. Nelson, S. Krupsky, A. Pollack, E. Aloni, M. Belkin, I. Vanzetta, M. Rosner, and A. Grinvald, “Special report: Noninvasive multi-parameter functional optical imaging of the eye,” Ophthalmic Surg. Lasers Imaging 36(1), 57–66 (2005). [PubMed]
  25. M. D. Abràmoff, Y. H. Kwon, D. Ts’o, P. Soliz, B. Zimmerman, J. Pokorny, and R. Kardon, “Visual stimulus-induced changes in human near-infrared fundus reflectance,” Invest. Ophthalmol. Vis. Sci. 47(2), 715–721 (2006). [CrossRef] [PubMed]
  26. J. L. Schei, M. D. McCluskey, A. J. Foust, X. C. Yao, and D. M. Rector, “Action potential propagation imaged with high temporal resolution near-infrared video microscopy and polarized light,” Neuroimage 40(3), 1034–1043 (2008). [CrossRef] [PubMed]
  27. X. C. Yao and Y. B. Zhao, “Optical dissection of stimulus-evoked retinal activation,” Opt. Express 16(17), 12446–12459 (2008). [CrossRef] [PubMed]
  28. N. S. Peachey, K. R. Alexander, D. J. Derlacki, and G. A. Fishman, “Light adaptation, rods, and the human cone flicker ERG,” Vis. Neurosci. 8(2), 145–150 (1992). [CrossRef] [PubMed]
  29. P. A. Sieving, K. Murayama, and F. Naarendorp, “Push-pull model of the primate photopic electroretinogram: a role for hyperpolarizing neurons in shaping the b-wave,” Vis. Neurosci. 11(3), 519–532 (1994). [CrossRef] [PubMed]
  30. X. C. Yao, L. Liu, and Y. G. Li, “Intrinsic optical signal imaging of retinal activity in frog eye,” J. Inn. Opt. Health Scie. 2(02), 201–208 (2009). [CrossRef]
  31. X. C. Yao, A. Foust, D. M. Rector, B. Barrowes, and J. S. George, “Cross-polarized reflected light measurement of fast optical responses associated with neural activation,” Biophys. J. 88(6), 4170–4177 (2005). [CrossRef] [PubMed]
  32. X. C. Yao, D. M. Rector, and J. S. George, “Optical lever recording of displacements from activated lobster nerve bundles and Nitella internodes,” Appl. Opt. 42(16), 2972–2978 (2003). [CrossRef] [PubMed]
  33. I. Tasaki and P. M. Byrne, “Rapid structural changes in nerve fibers evoked by electric current pulses,” Biochem. Biophys. Res. Commun. 188(2), 559–564 (1992). [CrossRef] [PubMed]
  34. L. B. Cohen, “Changes in neuron structure during action potential propagation and synaptic transmission,” Physiol. Rev. 53(2), 373–418 (1973). [PubMed]
  35. G. H. Kim, P. Kosterin, A. L. Obaid, and B. M. Salzberg, “A Mechanical Spike Accompanies the Action Potential in Mammalian Nerve Terminals,” Biophys. J. (2007).
  36. A. J. Foust and D. M. Rector, “Optically teasing apart neural swelling and depolarization,” Neuroscience 145(3), 887–899 (2007). [CrossRef] [PubMed]
  37. B. M. Salzberg, A. L. Obaid, and H. Gainer, “Large and rapid changes in light scattering accompany secretion by nerve terminals in the mammalian neurohypophysis,” J. Gen. Physiol. 86(3), 395–411 (1985). [CrossRef] [PubMed]
  38. D. Landowne, “Measuring nerve excitation with polarized light,” Jpn. J. Physiol. 43(Suppl 1), S7–S11 (1993). [PubMed]
  39. R. A. Stepnoski, A. LaPorta, F. Raccuia-Behling, G. E. Blonder, R. E. Slusher, and D. Kleinfeld, “Noninvasive detection of changes in membrane potential in cultured neurons by light scattering,” Proc. Natl. Acad. Sci. U.S.A. 88(21), 9382–9386 (1991). [CrossRef] [PubMed]
  40. S. M. Dawis and M. Rossetto, “Light-evoked changes in near-infrared transmission by the ON and OFF channels of the anuran retina,” Vis. Neurosci. 10(4), 687–692 (1993). [CrossRef] [PubMed]
  41. T. E. Frumkes and T. Eysteinsson, “Suppressive rod-cone interaction in distal vertebrate retina: intracellular records from Xenopus and Necturus,” J. Neurophysiol. 57(5), 1361–1382 (1987). [PubMed]
  42. T. E. Frumkes and S. M. Wu, “Independent influences of rod adaptation on cone-mediated responses to light onset and offset in distal retinal neurons,” J. Neurophysiol. 64(3), 1043–1054 (1990). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 4
 
Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited