OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 7 — Mar. 29, 2010
  • pp: 7369–7375

Parallel optical nanolithography using nanoscale bowtie aperture array

Sreemanth M.V. Uppuluri, Edward C. Kinzel, Yan Li, and Xianfan Xu  »View Author Affiliations


Optics Express, Vol. 18, Issue 7, pp. 7369-7375 (2010)
http://dx.doi.org/10.1364/OE.18.007369


View Full Text Article

Enhanced HTML    Acrobat PDF (637 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report results of parallel optical nanolithography using nanoscale bowtie aperture array. These nanoscale bowtie aperture arrays are used to focus a laser beam into multiple nanoscale light spots for parallel nano-lithography. Our work employed a frequency-tripled diode-pumped solid state (DPSS) laser (λ = 355 nm) and Shipley S1805 photoresist. An interference-based optical alignment system was employed to position the bowtie aperture arrays with the photoresist surface. Nanoscale direct-writing of sub-100nm features in photoresist in parallel is demonstrated.

© 2010 OSA

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(110.4235) Imaging systems : Nanolithography
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Imaging Systems

History
Original Manuscript: February 9, 2010
Revised Manuscript: March 11, 2010
Manuscript Accepted: March 15, 2010
Published: March 24, 2010

Citation
Sreemanth M.V. Uppuluri, Edward C. Kinzel, Yan Li, and Xianfan Xu, "Parallel optical nanolithography using nanoscale bowtie aperture array," Opt. Express 18, 7369-7375 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-7-7369


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Sun and G. J. Leggett, “Matching the resolution of electron beam lithography by scanning near-field photolithography,” Nano Lett. 4(8), 1381–1384 (2004). [CrossRef]
  2. M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett. 75(22), 3560–3562 (1999). [CrossRef]
  3. Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5(5), 957–961 (2005). [CrossRef] [PubMed]
  4. X. Shi and L. Hesselink, “Mechanisms for enhancing power throughput from planar nano-apertures for near-field optical data storage,” Jpn. J. Appl. Phys. 41(Part 1, No. 3B), 1632–1635 (2002). [CrossRef]
  5. K. Şendur, W. Challener, and C. Peng, “Ridge waveguide as a near field aperture for high density data storage,” J. Appl. Phys. 96(5), 2743–2752 (2004). [CrossRef]
  6. E. X. Jin and X. Xu, “Finite difference time domain studies on optical transmission through planar nano-apertures in a metal film,” Jpn. J. Appl. Phys. 43(1), 407–417 (2004). [CrossRef]
  7. F. Chen, A. Itagi, J. A. Bain, D. D. Stancil, T. E. Schlesinger, L. Stebounova, G. C. Walker, and B. B. Akhremitchev, “Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser,” Appl. Phys. Lett. 83(16), 3245–3247 (2003). [CrossRef]
  8. L. Wang, S. M. V. Uppuluri, E. X. Jin, and X. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett. 6(3), 361–364 (2006). [CrossRef] [PubMed]
  9. N. Murphy-DuBay, L. Wang, E. C. Kinzel, S. M. V. Uppuluri, and X. Xu, “Nanopatterning using NSOM probes integrated with high transmission nanoscale bowtie aperture,” Opt. Express 16(4), 2584–2589 (2008). [CrossRef] [PubMed]
  10. Y. Kim, S. Kim, H. Jung, E. Lee, and J. W. Hahn, “Plasmonic nano lithography with a high scan speed contact probe,” Opt. Express 17(22), 19476–19485 (2009). [CrossRef] [PubMed]
  11. W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008). [CrossRef] [PubMed]
  12. E. X. Jin and X. Xu, “Obtaining super resolution light spot using surface plasmon assisted sharp ridge nano-aperture,” Appl. Phys. Lett. 86(11), 111106–111108 (2005). [CrossRef]
  13. Solvay Solexis Inc, “Fomblin Lubes – PFPE lubricants”, http://www.solvaysolexis.com/static/wma/pdf/1/4/9/7/3/BR%20FOMB%20Lubes%20LD.pdf .
  14. Remcom Inc., FDTD Commercial Software Package, Version XFDTD 6.3.
  15. H. Gai, J. Wang, and Q. Tian, “Modified Debye model parameters of metals applicable for broadband calculations,” Appl. Opt. 46(12), 2229–2233 (2007). [CrossRef] [PubMed]
  16. P. B. Johnson and R. W. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni and Pd,” Phys. Rev. B 9(12), 5056–5070 (1974). [CrossRef]
  17. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).
  18. M. Despont, J. Brugger, U. Drechsler, U. Dürig, W. Häberle, M. Lutwyche, H. Rothuizen, R. Stutz, R. Widmer, G. Binnig, H. Rohrer, and P. Vettiger, “VLSI-NEMS chip for parallel AFM data storage,” Sens. Actuators 80(2), 100–107 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited