OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 7 — Mar. 29, 2010
  • pp: 7384–7389

Sub-millisecond, high stroke phase modulation using polymer network liquid crystals

Gordon D. Love, Andrew K. Kirby, and Robert A. Ramsey  »View Author Affiliations


Optics Express, Vol. 18, Issue 7, pp. 7384-7389 (2010)
http://dx.doi.org/10.1364/OE.18.007384


View Full Text Article

Enhanced HTML    Acrobat PDF (530 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe the production of a high speed, and high stroke, phase modulator using a polymer network liquid crystal device. We present data showing fast response times (sub millisecond) in a device which can operate at visible wavelengths with a simple electrical addressing scheme.

© 2010 OSA

OCIS Codes
(120.5060) Instrumentation, measurement, and metrology : Phase modulation
(160.3710) Materials : Liquid crystals

ToC Category:
Optical Devices

History
Original Manuscript: February 12, 2010
Revised Manuscript: March 19, 2010
Manuscript Accepted: March 19, 2010
Published: March 24, 2010

Citation
Gordon D. Love, Andrew K. Kirby, and Robert A. Ramsey, "Sub-millisecond, high stroke phase modulation using polymer network liquid crystals," Opt. Express 18, 7384-7389 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-7-7384


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Langlois, C. D. Saunter, C. N. Dunlop, R. Myers, and G. D. Love, “Multiconjugate adaptive optics: laboratory experience,” Opt. Express 12(8), 1689–1699 (2004). [CrossRef] [PubMed]
  2. D. Dayton, S. Browne, J. Gonglewski, and S. Restaino, “Characterization and Control of a Multielement Dual-Frequency Liquid-Crystal Device for High-Speed Adaptive Optical Wave-Front Correction,” Appl. Opt. 40(15), 2345–2355 (2001). [CrossRef] [PubMed]
  3. M. Y. Loktev, V. N. Belopukhov, F. L. Vladimirov, G. V. Vdovin, G. D. Love, and A. F. Naumov, “Wave front control systems based on modal liquid crystal lenses,” Rev. Sci. Instrum. 71(9), 3290–3297 (2000). [CrossRef]
  4. M. Ye and S. Sato, “Liquid crystal lens with focus movable along and off axis,” Opt. Commun. 225(4–6), 277–280 (2003). [CrossRef]
  5. M. Reicherter, S. Zwick, T. Haist, C. Kohler, H. Tiziani, and W. Osten, “Fast digital hologram generation and adaptive force measurement in liquid-crystal-display-based holographic tweezers,” Appl. Opt. 45(5), 888–896 (2006). [CrossRef] [PubMed]
  6. P. J. W. Hands, S. A. Tatarkova, A. K. Kirby, and G. D. Love, “Modal liquid crystal devices in optical tweezing: 3D control and oscillating potential wells,” Opt. Express 14(10), 4525–4537 (2006). [CrossRef] [PubMed]
  7. P. J. Bos and K. R. Beran, “The pi-cell, A Fast Liquid-Crystal Optical Switching Device,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 113(1), 329–339 (1984). [CrossRef]
  8. S. T. Wu and C. S. Wu, “High-speed liquid-crystal modulators using transient nematic effect,” J. Appl. Phys. 65(2), 527 (1989). [CrossRef]
  9. C. R. Stein, “A Two-Frequency Coincidence Addressing Scheme for Nematic-Liquid-Crystal Displays,” Appl. Phys. Lett. 19(9), 343 (1971). [CrossRef]
  10. H. K. Bücher, R. T. Klingbiel, and J. P. VanMeter, “Frequency-addressed liquid crystal field effect,” Appl. Phys. Lett. 25(4), 186 (1974). [CrossRef]
  11. H. Q. Xianyu, S. T. Wu, and C. L. Lin, “Dual frequency liquid crystals: a review,” Liquid Crystals 36(6), 717–726 (2009). [CrossRef]
  12. V. A. Dorezyuk, A. F. Naumov, and V. I. Shmal’gauzen, “Control of liquid crystal correctors in adaptive optical systems,” Sov. Tech. Phys. 34, 1389 (1989).
  13. A. K. Kirby and G. D. Love, “Fast, large and controllable phase modulation using dual frequency liquid crystals,” Opt. Express 12(7), 1470–1475 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-7-1470 . [CrossRef] [PubMed]
  14. A. Jákli, D. R. Kim, L. C. Chien, and A. Saupe, “Effect of a polymer network on the alignment and the rotational viscosity of a nematic liquid crystal,” J. Appl. Phys. 72(7), 3161 (1992). [CrossRef]
  15. Y. H. Fan, H. Ren, and S. T. Wu, “Electrically switchable Fresnel lens using a polymer-separated composite film,” Opt. Express 13(11), 4141–4147 (2005). [CrossRef] [PubMed]
  16. Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, and S. T. Wu, “Fast-response and scattering free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett. 84(8), 1233 (2004). [CrossRef]
  17. J. L. West, G. Zhang, A. Glushchenko, and Y. Reznikov, “Fast birefringent mode stressed liquid crystal,” Appl. Phys. Lett. 86(3), 031111 (2005). [CrossRef]
  18. B. Wang, G. Zhang, A. Glushchenko, J. L. West, P. J. Bos, and P. F. MacManamon, “Stressed liquid crystal optical phased array for fast tip-tilt awavefront correction,” Appl. Phys. (Berl.) 44, 7754 (2005).
  19. Y. H. Wu, Y. H. Lin, Y. Q. Lu, H. Ren, Y. H. Fan, J. R. Wu, and S. T. Wu, “Submillisecond response variable optical attenuator based on sheared polymer network liquid crystal,” Opt. Express 12(25), 6382–6384 (2004). [CrossRef]
  20. O. A. Aphonin, Y. V. Panina, A. B. Pravdin, and D. A. Yakovlev, “Optical-properties of stretched polymer-dispersed liquid-crystal films,” Liq. Cryst. 15(3), 395–407 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited