OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 7 — Mar. 29, 2010
  • pp: 7554–7568

Effect of pulse temporal shape on optical trapping and impulse transfer using ultrashort pulsed lasers

Janelle C Shane, Michael Mazilu, Woei Ming Lee, and Kishan Dholakia  »View Author Affiliations

Optics Express, Vol. 18, Issue 7, pp. 7554-7568 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (755 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the effects of pulse duration on optical trapping with high repetition rate ultrashort pulsed lasers, through Lorentz-Mie theory, numerical simulation, and experiment. Optical trapping experiments use a 12 femtosecond duration infrared pulsed laser, with the trapping microscope’s temporal dispersive effects measured and corrected using the Multiphoton Intrapulse Interference Phase Scan method. We apply pulse shaping to reproducibly stretch pulse duration by 1.5 orders of magnitude and find no material-independent effects of pulse temporal profile on optical trapping of 780nm silica particles, in agreement with our theory and simulation. Using pulse shaping, we control two-photon fluorescence in trapped fluorescent particles, opening the door to other coherent control applications with trapped particles.

© 2010 Optical Society of America

OCIS Codes
(140.7010) Lasers and laser optics : Laser trapping
(320.5540) Ultrafast optics : Pulse shaping

ToC Category:
Optical Trapping and Manipulation

Original Manuscript: January 25, 2010
Revised Manuscript: March 9, 2010
Manuscript Accepted: March 11, 2010
Published: March 26, 2010

Virtual Issues
Vol. 5, Iss. 7 Virtual Journal for Biomedical Optics

Janelle C. Shane, Michael Mazilu, Woei Ming Lee, and Kishan Dholakia, "Effect of pulse temporal shape on optical trapping and impulse transfer using ultrashort pulsed lasers," Opt. Express 18, 7554-7568 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. C. Neuman and S. M. Block, "Optical trapping," Rev. Sci. Instrum. 75, 2787-2809 (2004). [CrossRef]
  2. K. Dholakia, P. Reece, and M. Gu, "Optical micromanipulation," Chem. Soc. Rev. 37, 42-55 (2008). [CrossRef] [PubMed]
  3. K. Dholakia, M. P. MacDonald, P. Zemanek, and T. Cizmár, "Cellular and colloidal separation using optical forces" in "Laser manipulation of cells and tissues methods in cell biology," M. Berns and K. Greulich, ed., 82, 467-495 (Elsevier, 2007).
  4. G. C. Spalding, J. Courtial, and R. D. Leonardo, "Holographic optical tweezers," in "Structured Light and its Applications: An Introduction to Phase-Structured Beams and Nanoscale Optical Forces," D. L. Andrews, ed., (Elsevier, 2008) pp. 139-168.
  5. K. Dholakia and W. M. Lee, "Optical trapping takes shape: the use of structured light fields," Adv. Atomic, Molecular, Opt. Physics 56, 261-337 (2008).
  6. H. Misawa, M. Koshioka, K. Sasaki, N. Kitamura, and H. Masuhara, "Three-dimensional optical trapping and laser ablation of a single polymer latex particle in water," J. Appl. Phys. 70, 3829 (1991). [CrossRef]
  7. L. Malmqvist and H. M. Hertz, "2nd-harmonic generation in optically trapped nonlinear particles with pulsed lasers," Appl. Opt. 34, 3392-3397 (1995). [CrossRef] [PubMed]
  8. E. V. Perevedentseva, A. V. Karmenyan, F. J. Kao, and A. Chiou, "Second harmonic generation of biotin and biotin ester microcrystals trapped in optical tweezers with a mode-locked Ti : Sapphire laser," Scanning 26, I78-I82 (2004). [PubMed]
  9. B. Agate, C. T. A. Brown, W. Sibbett, and K. Dholakia, "Femtosecond optical tweezers for in-situ control of two-photon fluorescence," Opt. Express 12, 3011-3017 (2004). [CrossRef] [PubMed]
  10. K. Dholakia, H. Little, C. T. A. Brown, B. Agate, D. McGloin, L. Paterson, and W. Sibbett, "Imaging in optical micromanipulation using two-photon excitation," New J. Phys. 6, 136 (2004). [CrossRef]
  11. A. Fontes, K. Ajito, A. A. R. Neves, W. L. Moreira, A. A. de Thomaz, L. C. Barbosa, A. M. de Paula, and C. L. Cesar, "Raman, hyper-Raman, hyper-Rayleigh, two-photon luminescence and morphology-dependent resonance modes in a single optical tweezers system," Phys. Rev. E 72, 012903 (2005). [CrossRef]
  12. N. K. Metzger, E. M. Wright, W. Sibbett, and K. Dholakia, "Visualization of optical binding of microparticles using a femtosecond fiber optical trap," Opt. Express 14, 3677-3687 (2006). [CrossRef] [PubMed]
  13. D. Morrish, X. S. Gan, and M. Gu, "Morphology-dependent resonance induced by two-photon excitation in a micro-sphere trapped by a femtosecond pulsed laser," Opt. Express 12, 4198-4202 (2004). [CrossRef] [PubMed]
  14. D. Morrish, X. S. Gan, and M. Gu, "Scanning particle trapped optical microscopy based on two-photon-induced morphology-dependent resonance in a trapped microsphere," Appl. Phys. Lett. 88, 141103 (2006). [CrossRef]
  15. S. Kuriakose, D. Morrish, X. Gan, J. W. M. Chon, K. Dholakia, and M. Gu, "Near-field optical trapping with an ultrashort pulsed laser beam," Appl. Phys. Lett. 92, 081108 (2008). [CrossRef]
  16. J. W. Chan, H. Winhold, S. M. Lane, and T. Huser, "Optical trapping and coherent anti-Stokes Raman scattering (CARS) spectroscopy of submicron-size particles," IEEE J. Sel. Top. Quantum Electron. 11, 858-863 (2005). [CrossRef]
  17. K. Inaba, K. Imaizumi, K. Katayama, M. Ichimiya, M. Ashida, T. Iida, H. Ishihara, and T. Itoh, "Optical manipulation of CuCl nanoparticles under an excitonic resonance condition in superfluid helium," Physica Status Solidi B 243, 3829-3833 (2006). [CrossRef]
  18. J. L. Deng, Q. Wei, Y. Z. Wang, and Y. Q. Li, "Numerical modeling of optical levitation and trapping of the stuck particles with a pulsed optical tweezers," Opt. Express 13, 3673-3680 (2005). [CrossRef] [PubMed]
  19. A. A. Ambardekar and Y. Q. Li, "Optical levitation and manipulation of stuck particles with pulsed optical tweezers," Opt. Lett. 30, 1797-1799 (2005). [CrossRef] [PubMed]
  20. L. Pan, A. Ishikawa, and N. Tamai, "Detection of optical trapping of CdTe quantum dots by two-photon-induced luminescence," Phys. Rev. B 75, 161305 (2007). [CrossRef]
  21. L. Jauffred, A. C. Richardson, and L. B. Oddershede, "Three-dimensional optical control of individual quantum dots," Nano Lett. 8, 3376-3380 (2008). [CrossRef] [PubMed]
  22. L.-G. Wang and C.-L. Zhao, "Dynamic radiation force of a pulsed Gaussian beam acting on a Rayleigh dielectric sphere," Opt. Express 15, 10615-10621 (2007). [CrossRef] [PubMed]
  23. A. K. De, D. Roy, A. Dutta, and D. Goswami, "Stable optical trapping of latex nanoparticles with ultrashort pulsed illumination," Appl. Opt. 48, G33-G37 (2009). [CrossRef] [PubMed]
  24. Y. Deng, J. Bechhoefer, and N. R. Forde, "Brownian motion in a modulated optical trap," J. Opt. A: Pure and Applied Optics 9, S256-S263 (2007). [CrossRef]
  25. J. D. Jackson, Classical Electrodynamics (Wiley, 1998).
  26. S. Stallinga, "Radiation force on a Fabry-Perot slab immersed in a dielectric," Opt. Express 14, 1286-1295 (2006). [CrossRef] [PubMed]
  27. J. P. Gordon, "Radiation forces and momenta in dielectric media," Phys. Rev. A 8, 14-21 (1973). [CrossRef]
  28. R. Loudon and S. M. Barnett, "Theory of the radiation pressure on dielectric slabs, prisms and single surfaces," Opt. Express 14, 11855-11869 (2006). [CrossRef] [PubMed]
  29. M. Mansuripur, "Radiation pressure and the linear momentum of the electromagnetic field," Opt. Express 12, 5375-5401 (2007). [CrossRef]
  30. I. Brevik, "Experiments in phenomenological electrodynamics and the electromagnetic energy-momentum tensor," Phys. Reports 52, 133-201 (1979). [CrossRef]
  31. M. Dienerowitz, M. Mazilu, and K. Dholakia, "Optical manipulation of nanoparticles: a review," J. Nanophotonics 2, 021875 (2008). [CrossRef]
  32. F. Gittes and C. F. Schmidt, "Interference model for back-focal-plane displacement detection in optical tweezers," Opt. Lett. 23, 7-9 (1998). [CrossRef]
  33. V. V. Lozovoy, I. Pastirk, and M. Dantus, "Multiphoton Intrapulse Interference. IV. Ultrashort laser pulse spectral phase characterization and compensation," Opt. Lett. 29, 775-777 (2004). [CrossRef] [PubMed]
  34. B. Xu, J. M. Gunn, J. M. D. Cruz, V. V. Lozovoy, and M. Dantus, "Quantitative investigation of the Multiphoton Intrapulse Interference Phase Scan method for simultaneous phase measurement and compensation of femtosecond laser pulses," J. Opt. Soc. Am. B 23, 750-759 (2006). [CrossRef]
  35. M. Dantus, V. V. Lozovoy, and I. Pastirk, "MIIPS characterizes and corrects femtosecond pulses," Laser Focus World 43, 101-104 (2007).
  36. J. Shane, M. Mazilu, W. M. Lee, and K. Dholakia, "Optical trapping using ultrashort 12.9fs pulses," Optical Trapping and Optical Micromanipulation V, Proc. SPIE,  7038, 70380Y (2008).
  37. K. Svoboda and S. M. Block, "Biological applications of optical forces," Annual Reviews in Biophysics and Biomolecular Structure 23, 247-285 (1994). [CrossRef]
  38. N. Dudovich, D. Oron, and Y. Silberberg, "Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy," Nature 418, 512-514 (2002). [CrossRef] [PubMed]
  39. Y. Coello, B. Xu, T. Miller, V. Lozovoy, and M. Dantus, "Group-velocity dispersion measurements of water, seawater, and ocular components using Multiphoton Intrapulse Interference Phase Scan," Appl. Opt. 46, 8394-8401 (2007). [CrossRef] [PubMed]
  40. V. V. Lozovoy, B. Xu, J. C. Shane, and M. Dantus, "Selective nonlinear optical excitation with pulses shaped by pseudorandom Galois fields," Phys. Rev. A 74, 41805 (2006). [CrossRef]
  41. J. M. Dela Cruz, I. Pastirk, M. Comstock, V. V. Lozovoy, and M. Dantus, "Use of coherent control methods through scattering biological tissue to achieve functional imaging," Proc. Natl. Acad. Sci., USA 101, 16996-7001 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited