OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 8 — Apr. 12, 2010
  • pp: 7886–7892

Diffraction-Enhanced Beam-Focusing for X-rays in Curved Multi-Plate Crystal Cavity

Y.-Y. Chang, S.-Y. Chen, H.-H. Wu, S.-C. Weng, C.-H. Chu, Y.-R. Lee, M.-T. Tang, Yu. Stetsko, B.-Y. Shew, M. Yabashi, and S.-L. Chang  »View Author Affiliations

Optics Express, Vol. 18, Issue 8, pp. 7886-7892 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (640 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Unusual x-ray focusing effect is reported for parabolic curved multi-plate x-ray crystal cavities of silicon consisting of compound refractive lenses (CRL). The transmitted beam of the (12 4 0) back reflection near 14.4388 keV from these monolithic silicon crystal devices exhibits extraordinary focusing enhancement, such that the focal length is reduced by as much as 18% for 2-beam and 56% for 24-beam diffraction from the curved crystal cavity. This effect is attributed to the presence of the involved Bragg diffractions, in which the wavevector of the transmitted beam is bent further when traversing several curved crystal surfaces.

© 2010 OSA

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(260.1180) Physical optics : Crystal optics
(050.1965) Diffraction and gratings : Diffractive lenses

ToC Category:
Diffraction and Gratings

Original Manuscript: January 4, 2010
Revised Manuscript: March 5, 2010
Manuscript Accepted: March 22, 2010
Published: March 31, 2010

Y.-Y. Chang, S.-Y. Chen, H.-H. Wu, S.-C. Weng, C.-H. Chu, Y.-R. Lee, M.-T. Tang, Yu. Stetsko, B.-Y. Shew, M. Yabashi, and S.-L. Chang, "Diffraction-enhanced beam-focusing for X-rays in curved multi-plate crystal cavity," Opt. Express 18, 7886-7892 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Born, and M. Wolf, Principles of Optics (Pergamon Press, Oxford, 1964).
  2. M. Hart, “Bragg reflection x ray optics,” Rep. Prog. Phys. 34(2), 435–490 (1971). [CrossRef]
  3. A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler, “A compound refractive lens for focusing high-energy x-rays,” Nature 384(6604), 49–51 (1996). [CrossRef]
  4. B. Lengeler, C. Schroer, J. Tümmler, B. Benner, M. Richwin, A. Snigirev, I. Snigireva, and M. Drakopoulos, “Imaging by parabolic refractive lenses in the hard x-ray range,” J. Synchrotron Radiat. 6(6), 1153–1167 (1999). [CrossRef]
  5. A. Snigirev, I. Snigireva, V. Kohn, V. Yunkin, S. Kuznetsov, M. B. Grigoriev, T. Roth, G. Vaughan, and C. Detlefs, “X-ray nanointerferometer based on si refractive bilenses,” Phys. Rev. Lett. 103(6), 064801 (2009). [CrossRef] [PubMed]
  6. K. Evans-Lutterodt, A. Stein, J. M. Ablett, N. Bozovic, A. Taylor, and D. M. Tennant, “Using compound kinoform hard-x-ray lenses to exceed the critical angle limit,” Phys. Rev. Lett. 99(13), 134801 (2007). [CrossRef] [PubMed]
  7. K. Yamauchi, K. Yamamura, H. Mimura, Y. Sano, A. Saito, A. Souvorov, M. Yabashi, K. Tamasaku, T. Ishikawa, and Y. Mori, “Nearly diffraction-limited line focusing of a hard-X-ray beam with an elliptically figured mirror,” J. Synchrotron Radiat. 9(5), 313–316 (2002). [CrossRef] [PubMed]
  8. C. David, B. Nöhammer, and E. Ziegler, “Wavelength tunable diffractive transmission lens for hard x rays,” Appl. Phys. Lett. 79(8), 1088–1090 (2001). [CrossRef]
  9. Y. Li, M. Yasa, O. Pelletier, C. R. Safinya, E. Caine, E. E. Hu, and P. Fernandez, “Metal layer Bragg–Fresnel lenses for diffraction focusing of hard x-rays,” Appl. Phys. Lett. 82(15), 2538–2540 (2003). [CrossRef]
  10. C. G. Schroer and B. Lengeler, “Focusing hard x rays to nanometer dimensions by adiabatically focusing lenses,” Phys. Rev. Lett. 94(5), 054802 (2005). [CrossRef] [PubMed]
  11. A. Jarre, C. Fuhse, C. Ollinger, J. Seeger, R. Tucoulou, and T. Salditt, “Two-dimensional hard x-ray beam compression by combined focusing and waveguide optics,” Phys. Rev. Lett. 94(7), 074801 (2005). [CrossRef] [PubMed]
  12. S.-L. Chang, Y. P. Stetsko, M.-T. Tang, Y.-R. Lee, W.-H. Sun, M. Yabashi, and T. Ishikawa, “X-ray resonance in crystal cavities: realization of Fabry-Perot resonator for hard x rays,” Phys. Rev. Lett. 94(17), 174801 (2005). [CrossRef] [PubMed]
  13. S.-L. Chang, Y. P. Stetsko, M.-T. Tang, Y.-R. Lee, W.-H. Sun, M. Yabashi, T. Ishikawa, H.-H. Wu, B.-Y. Shew, Y.-H. Lin, T.-T. Kuo, K. Tamasaku, D. Miwa, S.-Y. Chen, Y.-Y. Chang, and J.-T. Shy, “Crystal cavity resonance for hard x rays: A diffraction experiment,” Phys. Rev. B 74(13), 134111 (2006). [CrossRef]
  14. M. Yabashi, K. Tamasaku, S. Kikuta, and T. Ishikawa, “X-ray monochromator with an energy resolution of 8×10−9 at 14.41 keV,” Rev. Sci. Instrum. 72(11), 4080–4083 (2001). [CrossRef]
  15. A. Authier, Dynamical Theory of X-Ray Diffraction (Oxford University Press, Oxford, 2001) p.149.
  16. J. P. Sutter, E. E. Alp, M. Y. Hy, P. L. Lee, H. Sinn, W. Sturhahn, T. S. Toellner, G. Bortel, and R. Colella, “Multiple-beam x-ray diffraction near exact backscattering in silicon,” Phys. Rev. B 63(9), 094111 (2001). [CrossRef]
  17. S.-L. Chang, X-ray Multiple-Wave Diffraction: Theory and Application (Springer-Verlag, Berlin, 2004).
  18. M.-S. Chiu, Y. P. Stetsko, and S.-L. Chang, “Dynamical calculation for X-ray 24-beam diffraction in a two-plate crystal cavity of silicon,” Acta Crystallogr. A 64(3), 394–403 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited