OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 8 — Apr. 12, 2010
  • pp: 7982–7993

Effects of the equivalent coupling layer on ultra- long-range surface-plasmon-polariton waves

Ching-Wei Yu and Yi-Jun Jen  »View Author Affiliations

Optics Express, Vol. 18, Issue 8, pp. 7982-7993 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (893 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The mechanism and design of p- and s- polarized ultra-long-range surface-plasmon-polariton (SPP) propagation in the configuration {prism/ equivalent coupling layer (ECL)/ silver film (20 nm)/ equivalent substrate (ES)} are investigated using a normalized admittance diagram (NAD). The excitation of ultra-long-range SPP waves is characterized as a huge open loop of the NAD of the metal film at a designated angle of incidence. We propose three kinds of ECLs to complete the multilayer ultra-long-range SPP design: the normalized admittance of the ECL is (i) real (ii) infinite (iii) imaginary. The ultra-long propagation lengths in the three designs are compared at a wavelength of 632.8 nm for p- and s-polarization states.

© 2010 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(310.2790) Thin films : Guided waves
(310.4165) Thin films : Multilayer design

ToC Category:
Optics at Surfaces

Original Manuscript: February 3, 2010
Revised Manuscript: February 26, 2010
Manuscript Accepted: March 22, 2010
Published: March 31, 2010

Ching-Wei Yu and Yi-Jun Jen, "Effects of the equivalent coupling layer on ultra-long-range surface-plasmon-polariton waves," Opt. Express 18, 7982-7993 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin Heidelberg, 1988).
  2. A. Lakhtakia, Y.-J. Jen, and C.-F. Lin, “Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film. Part III: Experimental evidence,” J. Nanophoton. 3(1), 033506 (2009). [CrossRef]
  3. E. N. Economu, “Surface plasmons in thin films,” Phys. Rev. 182(2), 539–554 (1969). [CrossRef]
  4. D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47(26), 1927–1930 (1981). [CrossRef]
  5. L. Wedler and R. Haupt, “Long-range surface plasmon-polaritons in asymmetric layer structures,” J. Appl. Phys. 59(9), 3289–3291 (1986). [CrossRef]
  6. F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range modes supported by thin films,” Phys. Rev. B 44(11), 5855–5872 (1991). [CrossRef]
  7. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of asymmetric structures,” Phys. Rev. B 63(12), 125417 (2001). [CrossRef]
  8. R. Adato and J. Guo, “Characteristics of ultra-long range surface plasmon waves at optical frequencies,” Opt. Express 15(8), 5008–5017 (2007). [CrossRef] [PubMed]
  9. A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. Larsen, and S. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” J. Lightwave Technol. 23(1), 413–422 (2005). [CrossRef]
  10. R. Charbonneau, C. Scales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berini, “Passive integrated optics elements based on long-range surface plasmon polaritons,” J. Lightwave Technol. 24(1), 477–494 (2006). [CrossRef]
  11. G. G. Nenninger, P. Tobiska, J. Homola, and S. S. Yee, “Long-range surface plasmons for high-resolution surface plasmon resonance sensors,” Sens. Act. B 74(1-3), 145–151 (2001). [CrossRef]
  12. A. Lakhtakia, Y.-J. Jen, and C.-F. Lin, “Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film. Part III: Experimental evidence,” J. Nanophoton. 3(1), 033506 (2009). [CrossRef]
  13. Y.-J. Jen, A. Lakhtakia, C.-W. Yu, and T.-Y. Chan, “Multilayered structures for p- and s-polarized long-range surface-plasmon-polariton propagation,” J. Opt. Soc. Am. A 26(12), 2600–2606 (2009). [CrossRef]
  14. H. A. Macleod, Thin-Film Optical Filters, 2nd ed. (Adam Hilger, Bristol, 1986).
  15. E. Anemogiannis, E. N. Glytsis, and T. K. Gaylord, “Determination of guided and leaky modes in lossless and lossy planar multilayer optical waveguides: reflection pole method and wavevector density method,” J. Lightwave Technol. 17(5), 929–941 (1999). [CrossRef]
  16. J. Guo and R. Adato, “Extended long range plasmon waves in finite thickness metal film and layered dielectric materials,” Opt. Express 14(25), 12409–12418 (2006). [CrossRef] [PubMed]
  17. F. Y. Kou and T. Tamir, “Range extension of surface plasmons by dielectric layers,” Opt. Lett. 12(5), 367–369 (1987). [CrossRef] [PubMed]
  18. P. Berini, “Figures of merit for surface plasmon waveguides,” Opt. Express 14(26), 13030–13042 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited