OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 8 — Apr. 12, 2010
  • pp: 8019–8024

Patterning of two-dimensional planar lithium niobate architectures on glass surface by laser scanning

Tsuyoshi Honma and Takayuki Komatsu  »View Author Affiliations


Optics Express, Vol. 18, Issue 8, pp. 8019-8024 (2010)
http://dx.doi.org/10.1364/OE.18.008019


View Full Text Article

Enhanced HTML    Acrobat PDF (2026 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Two-dimensional planar LiNbO3 (LN) crystal architectures are patterned on the surface of Li2O-Nb2O5-B2O3-SiO2 glass by continuous wave ytterbium YVO4 fiber laser (wavelength: 1080 nm) irradiations, in which lasers are scanned continuously with narrow steps (pitches: 0.3 and 0.5 μm) and thus with overlaps of laser irradiated parts. For the planar LN crystals (area: 50 μm × 100 μm) patterned by laser scanning with a power of 0.9 W and a speed of 7 μm/s, it is demonstrated from polarized micro-Raman scattering spectra and azimuthal dependence of second harmonic intensities that the c-axis orientation of LN crystals is established along the laser scanning direction. The present study proposes that the laser irradiation technique gives us uniform LN crystal films on the glass surface.

© 2010 OSA

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(160.2750) Materials : Glass and other amorphous materials
(160.4330) Materials : Nonlinear optical materials
(220.4000) Optical design and fabrication : Microstructure fabrication

ToC Category:
Laser Microfabrication

History
Original Manuscript: February 9, 2010
Revised Manuscript: March 8, 2010
Manuscript Accepted: March 24, 2010
Published: March 31, 2010

Citation
Tsuyoshi Honma and Takayuki Komatsu, "Patterning of two-dimensional planar lithium niobate architectures on glass surface by laser scanning," Opt. Express 18, 8019-8024 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-8-8019


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. C. Gower, “Industrial applications of laser micromachining,” Opt. Express 7(2), 56–67 (2000). [CrossRef] [PubMed]
  2. Y. Yonesaki, K. Miura, R. Araki, K. Fujita, and K. Hirao, “Space-selective precipitation of non-linear optical crystals inside silicate glasses using near-infrared femtosecond laser,” J. Non-Cryst. Solids 351(10-11), 885–892 (2005). [CrossRef]
  3. Y. Dai, H. Ma, B. Lu, B. Yu, B. Zhu, and J. Qiu, “Femtosecond laser-induced oriented precipitation of Ba2TiGe2O8 crystals in glass,” Opt. Express 16(6), 3912–3917 (2008). [CrossRef] [PubMed]
  4. R. Sato, Y. Benino, T. Fujiwara, and T. Komatsu, “YAG laser-induced crystalline dot patterning in samarium tellurite glasses,” J. Non-Cryst. Solids 289(1-3), 228–232 (2001). [CrossRef]
  5. T. Honma, Y. Benino, T. Fujiwara, R. Sato, and T. Komatsu, “Technique for writing of nonlinear optical single-crystal lines in glass,” Appl. Phys. Lett. 83(14), 2796–2798 (2003). [CrossRef]
  6. T. Honma, Y. Benino, T. Fujiwara, and T. Komatsu, “Transition metal atom heat processing for writing of crystal lines in glass,” Appl. Phys. Lett. 88(23), 231105 (2006). [CrossRef]
  7. T. Honma, N. Hirokawa, and T. Komatsu, “Micro-architecuture of nonlinear optical Ba2TiGe2O8 crystal dots and lines on the surface of laser-induced crystallized glasses by chemical etching,” Appl. Surf. Sci. 255(5), 3126–3131 (2008). [CrossRef]
  8. N. Chayapiwut, T. Honma, Y. Benino, T. Fujiwara, and T. Komatsu, “Synthesis of Sm3+-doped strontium barium niobate crystals in glass by samarium atom heat processing,” J. Solid State Chem. 178(11), 3507–3513 (2005). [CrossRef]
  9. M. Sato, T. Honma, Y. Benino, and T. Komatsu, “Line patterning of (Sr,Ba)Nb2O6 crystals in borate glasses by transition metal atom heat processing,” J. Solid State Chem. 180(9), 2541–2549 (2007). [CrossRef]
  10. H. Sugita, T. Honma, Y. Benino, and T. Komatsu, “Formation of LiNbO3 crystals at the surface of TeO2-based glass by YAG laser-induced crystallization,” Solid State Commun. 143(6-7), 280–284 (2007). [CrossRef]
  11. T. Honma, K. Koshiba, Y. Benino, and T. Komatsu, “Writing of crystal lines and its optical properties of rare-earth ion (Er3+ and Sm3+) doped lithium niobate crystal on glass surface formed by laser irradiation,” Opt. Mater. 31(2), 315–319 (2008). [CrossRef]
  12. T. Honma, T. Komatsu, D. Zhao, and H. Jain, “Writing of rare-earth ion doped lithium nibate line patterns in glass by laser scanning,” IOP Conf. Series: Mater. Sci. Eng. 1, 012006 (2009). [CrossRef]
  13. Y. Tsukada, T. Honma, and T. Komatsu, “Self-organized periodic domain structure for second harmonic generations in ferroelastic β’-(Sm,Gd)2(MoO4)3 crystal lines on glass surface,” Appl. Phys. Lett. 94(4), 041915 (2009). [CrossRef]
  14. T. Komatsu, H. Tawarayama, H. Mohri, and K. Matusita, “Properties and crystallization behaviors of TeO2-LiNbO3 glasses,” J. Non-Cryst. Solids 135(2-3), 105–113 (1991). [CrossRef]
  15. T. Komatsu, H. Tawarayama, and K. Matusita, “Preparation and optical properties of transparent TeO2-based glasses containing BaTiO3 crystals,” J. Ceram. Soc. Jpn. 101, 46–50 (1993). [CrossRef]
  16. Y. Ding, A. Osaka, Y. Miura, H. Toratani, and Y. Matsuoka, “Second order optical nonlinearity of surface crystallized glass with lithium niobate,” J. Appl. Phys. 77(5), 2208–2210 (1995). [CrossRef]
  17. H. R. Xia, S. Q. Sun, X. F. Cheng, S. M. Dong, H. Y. Xu, L. Gao, and D. L. Cui, “Lattice vibrations and phase-transition soft mode in near stoichiometric lithium niobate crystals,” J. Appl. Phys. 98(3), 033513 (2005). [CrossRef]
  18. P. Galinetto, M. Marinone, D. Grando, G. Samoggia, F. Caccavale, A. Morbiato, and M. Musolino, “Micro-Raman analysis on LiNbO3 substrates and surfaces: Compositional homogeneity and effects of etching and polishing processes on structural properties,” Opt. Lasers Eng. 45(3), 380–384 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited