OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 8 — Apr. 12, 2010
  • pp: 8043–8052

Broadband THz lasing from a photon-phonon quantum cascade structure

G. Scalari, M. I. Amanti, C. Walther, R. Terazzi, M. Beck, and J. Faist  »View Author Affiliations

Optics Express, Vol. 18, Issue 8, pp. 8043-8052 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1292 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Laser emission over a broad range of frequencies from 2.8 to 4.1 THz is reported for a two-quantum well, photon-phonon cascade structure. Maximum operating temperatures of 125 K are reported, with optical peak powers in eccess of 30 mW from a double-metal ridge waveguide. The broadband nature of the gain curve is identified as due to coherent coupling of the injector and upper lasing states. Internal quantum efficiencies reaching 43 % are evaluated at 10 K. The laser operates in both polarities, showing laser action in reverse bias up to a temperature of 90 K. Simulations based on a full treatment of the structure with density matrix formalism are also presented and discussed.

© 2010 Optical Society of America

OCIS Codes
(140.5965) Lasers and laser optics : Semiconductor lasers, quantum cascade
(250.5960) Optoelectronics : Semiconductor lasers

ToC Category:
Lasers and Laser Optics

Original Manuscript: February 26, 2010
Revised Manuscript: March 23, 2010
Manuscript Accepted: March 24, 2010
Published: March 31, 2010

G. Scalari, M. I. Amanti, C. Walther, R. Terazzi, M. Beck, and J. Faist, "Broadband THz lasing from a photon-phonon quantum cascade structure," Opt. Express 18, 8043-8052 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. Beere, D. Ritchie, and J. Faist, "THz and sub-THz quantum cascade lasers," Laser Photon. Rev. 3, 45-66 (2009). [CrossRef]
  2. B. S. Williams, "Terahertz quantum cascade lasers," Nature Photonics 1, 517-525 (2007). [CrossRef]
  3. R. Köhler, A. Tredicucci, F. Beltram, H. Beere, E. Linfield, A. Davies, D. Ritchie, R. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417, 156-159 (2002). [CrossRef] [PubMed]
  4. S. Kumar, Q. Hu, and J. L. Reno, "186 K operation of terahertz quantum-cascade lasers based on a diagonal design," Appl. Phys. Lett. 94(13), 131105 (2009). [CrossRef]
  5. O. Gauthier-Lafaye, P. Boucaud, F. Julien, S. Sauvage, S. Cabaret, J. Lourtioz, and R. Planel, "Long-wavelength (≈ 15.5μm) unipolar semiconductor laser in GaAs quantum wells," Appl. Phys. Lett. 71(25), 3619-3621 (1997). [CrossRef]
  6. G. Scalari, M. Amanti, R. Terazzi, M. Beck, and J. Faist, "Two-well quantum cascade laser emitting from 2.7 to 4.1 THz," Proceedings of the Tenth International Conference on Intersubband Transitions in Quantum Wells, Montreal, Canada, September 2009, http://www.itqw2009.com/index.php.
  7. S. Kumar, C. Chan, Q. Hu, and J. Reno, "Two-well terahertz quantum-cascade laser with direct intrawell-phonon depopulation," Appl. Phys. Lett. 95, 141110 (2009). [CrossRef]
  8. B. Williams, S. Kumar, Q. Hu, and J. Reno, "Operation of terahertz quantum-cascade lasers at 164 K in pulsed mode and at 117 K in continuous-wave mode," Opt. Express 13, 3331-3339 (2005). [CrossRef] [PubMed]
  9. J. Fan, M. Belkin, F. Capasso, S. Khanna, M. Lachab, A. Davies, and E. Linfield, "Wide-ridge metal-metal terahertz quantum cascade lasers with high-order lateral mode suppression," Appl. Phys. Lett. 92, 031106 (2008). [CrossRef]
  10. M. Fischer, G. Scalari, M. Beck, and J. Faist, unpublished (2009).
  11. M. Amanti, G. Scalari, R. Terazzi, M. Fischer, M. Beck, J. Faist, A. Rudra, P. Gallo, and E. Kapon, "Bound-to-continuum terahertz quantum cascade laser with a single quantum well phonon extraction/injection stage," New Journ. Phys. 11, 125022 (2009).
  12. G. Scalari, R. Terazzi, M. Giovannini, N. Hoyler, and J. Faist, "Population inversion by resonant tunneling in quantum wells," Appl. Phys. Lett. 91, 032103 (2007). [CrossRef]
  13. R. Terazzi, T. Gresch, A. Wittmann, and J. Faist, "Sequential resonant tunneling in quantum cascade lasers," Phys. Rev. B 78(15), 4 (2008). [CrossRef]
  14. M. Vitiello, G. Scamarcio, V. Spagnolo, B. Williams, S. Kumar, Q. Hu, and J. Reno, "Measurement of subband electronic temperatures and population inversion in THz quantum-cascade lasers," Appl. Phys. Lett. 86, 111115 (2005). [CrossRef]
  15. T. Unuma, M. Yoshita, T. Noda, H. Sakaki, and H. Akiyama, "Intersubband absorption linewidth in GaAs quantum wells due to scattering by interface roughness, phonons, alloy disorder, and impurities," J. Appl. Phys. 93(3), 1586-1597 (2003). [CrossRef]
  16. S. Tsujino, A. Borak, E. Müller, M. Scheinert, C. Falub, H. Sigg, D. Grützmacher, M. Giovannini, and J. Faist, "Interface-roughness-induced broadening of intersubband electroluminescence in p-SiGe and n-GaInAs/AlInAs quantum cascade structures," Appl. Phys. Lett. 86(06), 062113 (2005). [CrossRef]
  17. A. Tredicucci, C. Gmachl, F. Capasso, D. Sivco, A. Hutchinson, and A. Cho, "A multiwavelength semiconductor laser," Nature 396, 350-353 (1998). [CrossRef]
  18. J. Freeman, O. Marshall, H. Beere, and D. Ritchie, "Electrically switchable emission in terahertz quantum cascade lasers," Opt. Express 16(24), 19,830-19,835 (2008). [CrossRef]
  19. L. Lever, N. Hinchcliffe, S. P. Khanna, P. Dean, Z. Ikonic, C. A. Evans, A. Davies, P. Harrison, E. Linfield, and R. W. Kelsall, "Terahertz ambipolar dual-wavelength quantum cascade laser," Opt. Express 17(22), 19,926-19,932 (2009). [CrossRef]
  20. S. Kumar and Q. Hu, "Coherence of resonant-tunneling transport in terahertz quantum-cascade lasers," Phys. Rev. B 80, 245316 (2009). [CrossRef]
  21. C. Gmachl, A. Tredicucci, D. Sivco, A. Hutchinson, F. Capasso, and A. Cho, "Bidirectional semiconductor laser," Science 286, 749-752 (1999). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited