OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 8 — Apr. 12, 2010
  • pp: 8115–8122

On the photonic implementation of universal quantum gates, Bell states preparation circuit and quantum LDPC encoders and decoders based on directional couplers and HNLF

Ivan B. Djordjevic  »View Author Affiliations


Optics Express, Vol. 18, Issue 8, pp. 8115-8122 (2010)
http://dx.doi.org/10.1364/OE.18.008115


View Full Text Article

Enhanced HTML    Acrobat PDF (169 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The Bell states preparation circuit is a basic circuit required in quantum teleportation. We describe how to implement it in all-fiber technology. The basic building blocks for its implementation are directional couplers and highly nonlinear optical fiber (HNLF). Because the quantum information processing is based on delicate superposition states, it is sensitive to quantum errors. In order to enable fault-tolerant quantum computing the use of quantum error correction is unavoidable. We show how to implement in all-fiber technology encoders and decoders for sparse-graph quantum codes, and provide an illustrative example to demonstrate this implementation. We also show that arbitrary set of universal quantum gates can be implemented based on directional couplers and HNLFs.

© 2010 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(270.5565) Quantum optics : Quantum communications
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

History
Original Manuscript: February 16, 2010
Revised Manuscript: March 22, 2010
Manuscript Accepted: March 29, 2010
Published: April 1, 2010

Citation
Ivan B. Djordjevic, "On the photonic implementation of universal quantum gates, Bell states preparation circuit and quantum LDPC encoders and decoders based on directional couplers and HNLF," Opt. Express 18, 8115-8122 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-8-8115


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. A. Neilsen, and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2000).
  2. E. Brainis, L. P. Lamoureux, N. J. Cerf, P. Emplit, M. Haelterman, and S. Massar, “Fiber-optics implementation of the Deutsch-Jozsa and Bernstein-Vazirani quantum algorithms with three qubits,” Phys. Rev. Lett. 90(15), 157902 (2003). [CrossRef] [PubMed]
  3. A. Barenco, “A universal two-bit quantum computation,” Proc. R. Soc. Lond. A 449(1937), 679–683 (1995). [CrossRef]
  4. D. Deutsch, “Quantum computational networks,” Proc. R. Soc. Lond. A Math. Phys. Sci. 425(1868), 73–90 (1989). [CrossRef]
  5. G. J. Milburn, “Quantum optical Fredking gate,” Phys. Rev. Lett. 62(18), 2124–2127 (1989). [CrossRef] [PubMed]
  6. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409(6816), 46–52 (2001). [CrossRef] [PubMed]
  7. T. C. Ralph, N. K. Langford, T. B. Bell, and A. G. White, “Linear optical controlled-NOT gate in the coincidence basis,” Phys. Rev. A 65(6), 062324 (2002). [CrossRef]
  8. A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320(5876), 646–649 (2008). [CrossRef] [PubMed]
  9. N. Matsuda, R. Shimizu, Y. Mitsumori, H. Kosaka, and K. Edamatsu, “Observation of optical-fibre Kerr nonlinearity at the single-photon level,” Nat. Photonics 3(2), 95–98 (2009). [CrossRef]
  10. F. Gaitan, Quantum Error Correction and Fault Tolerant Quantum Computing (CRC Press, 2008).
  11. D. J. C. MacKay, G. Mitchison, and P. L. McFadden, “Sparse-graph codes for quantum error correction,” IEEE Trans. Inf. Theory 50(10), 2315–2330 (2004). [CrossRef]
  12. I. Djordjevic, “Photonic quantum dual-containing LDPC encoders and decoders,” IEEE Photon. Technol. Lett. 21(13), 842–844 (2009). [CrossRef]
  13. T. Brun, I. Devetak, and M.-H. Hsieh, “Correcting quantum errors with entanglement,” Science 314(5798), 436–439 (2006). [CrossRef] [PubMed]
  14. D. Gottesman, Stabilizer Codes and Quantum Error Correction. PhD Dissertation, California Institute of Technology, 1997.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited