OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 8 — Apr. 12, 2010
  • pp: 8193–8206

Integrated optical frequency-resolved Mach-Zehnder interferometers for label-free affinity sensing

Maria Kitsara, Konstantinos Misiakos, Ioannis Raptis, and Eleni Makarona  »View Author Affiliations

Optics Express, Vol. 18, Issue 8, pp. 8193-8206 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (627 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Integrated Optical Frequency-Resolved Mach-Zehnder Interferometry (IO FR-MZI) is introduced as an alternative, cost-efficient operation principle for integrated optical label-free affinity sensors that can combine high sensitivity with high versatility in terms of potential applications and experimental configurations. A detailed theoretical analysis of the method is presented followed by a semi-analytical approximation and numerical calculations in order to quantify the sensitivity and limits of detection of the FR-MZI over Single Wavelength MZI. The obtained results substantiate that IO FR-MZI- based sensors constitute a generic technological platform of high sensitivity that can be implemented into a plethora of detection schemes. For an optimized optical design well below 1mm in length the limit of detection can be as low as 0.025Å in terms of adlayer effective thickness allowing for truly miniaturized integrated optical sensors fabricated with high yield with standard microfabrication techniques.

© 2010 OSA

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(130.3120) Integrated optics : Integrated optics devices

ToC Category:
Integrated Optics

Original Manuscript: February 8, 2010
Revised Manuscript: March 16, 2010
Manuscript Accepted: March 16, 2010
Published: April 2, 2010

Maria Kitsara, Konstantinos Misiakos, Ioannis Raptis, and Eleni Makarona, "Integrated optical frequency-resolved Mach-Zehnder interferometers for label-free affinity sensing," Opt. Express 18, 8193-8206 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Star, E. Tu, J. Niemann, J. C. Gabriel, C. S. Joiner, and C. Valcke, “Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors,” Proc. Natl. Acad. Sci. U.S.A. 103(4), 921–926 (2006). [CrossRef] [PubMed]
  2. W. U. Wang, C. Chen, K. H. Lin, Y. Fang, and C. M. Lieber, “Label-free detection of small-molecule-protein interactions by using nanowire nanosensors,” Proc. Natl. Acad. Sci. U.S.A. 102(9), 3208–3212 (2005). [CrossRef] [PubMed]
  3. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008). [CrossRef] [PubMed]
  4. J. Lu, C. M. Strohsahl, B. L. Miller, and L. J. Rothberg, “Reflective Interferometric Detection of Label-Free Oligonucleotides,” Anal. Chem. 76(15), 4416–4420 (2004). [CrossRef] [PubMed]
  5. G. D. Francia, V. L. Ferrara, S. Manzo, and S. Chiavarini, “Towards a label-free optical porous silicon DNA sensor,” Biosens. Bioelectron. 21(4), 661–665 (2005). [CrossRef] [PubMed]
  6. T. T. Goodrich, H. J. Lee, and R. M. Corn, “Direct detection of genomic DNA by enzymatically amplified SPR imaging measurements of RNA microarrays,” J. Am. Chem. Soc. 126(13), 4086–4087 (2004). [CrossRef] [PubMed]
  7. J. Lou, L. Tong, and Z. Ye, “Modeling of silica nanowires for optical sensing,” Opt. Express 13(6), 2135–2140 (2005). [CrossRef] [PubMed]
  8. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007). [CrossRef] [PubMed]
  9. A. Ksendzov and Y. Lin, “Integrated optics ring-resonator sensors for protein detection,” Opt. Lett. 30(24), 3344–3346 (2005). [CrossRef]
  10. J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendro, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials 23(17), 3699–3710 (2002). [CrossRef] [PubMed]
  11. M. Wiki and R. E. Kunz, “Wavelength-interrogated optical sensor for biochemical applications,” Opt. Lett. 25(7), 463–465 (2000). [CrossRef]
  12. E. Chow, A. Grot, L. W. M. Mirkarimi, M. Sigalas, and G. Girolami, “Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity,” Opt. Lett. 29(10), 1093–1095 (2004). [CrossRef] [PubMed]
  13. P. Domachuck, H. Nguyen, H. C. Eggleton, B. J. Straub, and M. Gu, “Microfluidic tunable photonic band-gap device,” Appl. Phys. Lett. 84(11), 1838–1840 (2004). [CrossRef]
  14. M. I. Alayo, M. N. P. Carreρo, D. Criado, and I. Pereyra, “Optical and structural characterization of PECVD-silicon oxynitride films for waveguide device applications,” Proc. SPIE 5730, 250 (2005). [CrossRef]
  15. K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22(11), 2591–2597 (2007). [CrossRef]
  16. N. Skivesen, R. Horvath, S. Thinggaard, N. B. Larsen, and H. C. Pedersen, “Deep-probe metal-clad waveguide biosensors,” Biosens. Bioelectron. 22(7), 1282–1288 (2007). [CrossRef]
  17. B. Maisenhölder, H. P. Zappe, M. Moser, P. Riel, R. E. Kunz, and J. Edlinger, “Monolithically integrated optical interferometry for refractometry,” Electron. Lett. 33(11), 986 (1997). [CrossRef]
  18. K. Misiakos, S. E. Kakabakos, P. S. Petrou, and H. H. Ruf, “A monolithic silicon optoelectronic transducer as a real-time affinity biosensor,” Anal. Chem. 76(5), 1366–1373 (2004). [CrossRef] [PubMed]
  19. W. Lukosz, “Integrated optical chemical and direct biochemical sensors,” Sen. Act. B 29(1-3), 37–50 (1995). [CrossRef]
  20. K. Zinoviev, L. G. Carrascosa, J. S. del Rio, B. Sepulveda, C. Dominguez, and L. M. Lechuga, “Silicon Photonic Biochips for Lab-on-a-Chip Applications,” Adv. Opt. Technol. 2008, 383927 (2008).
  21. J. Song, Q. Fang, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Passive ring-assisted Mach-Zehnder interleaver on silicon-on-insulator,” Opt. Express 16(12), 8359–8365 (2008). [CrossRef] [PubMed]
  22. Y.-D. Wu, T.-T. Shih, and M. H. Chen, “New all-optical logic gates based on the local nonlinear Mach-Zehnder interferometer,” Opt. Express 16(1), 248–257 (2008). [CrossRef] [PubMed]
  23. F. Prieto, B. Sep lveda, A. Calle, A. Llobera, C. Dom nguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003). [CrossRef]
  24. F. Prieto, B. Sepϊlveda, A. Calle, A. Llobera, C. Domνnguez, and L. M. Lechuga, “Integrated mach-Zehnder interferometer based on ARROW structures for biosensor applications,” Sens. Act. B 92(1-2), 151–158 (2003). [CrossRef]
  25. R. G. Heideman and P. V. Lambeck, “Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach–Zehnder interferometer system,” Sens. Act. B 61(1-3), 100–127 (1999). [CrossRef]
  26. B. Y. Shew, C. H. Kuo, Y. C. Huang, and Y. H. Tsai, “UV-LIGA interferometer biosensor based on the SU-8 optical waveguide,” Sens. Act. A 120(2), 383–389 (2005). [CrossRef]
  27. B. Drapp, J. Piehler, A. Brecht, G. Gauglitz, B. J. Luff, J. S. Wilkinson, and J. Ingenhoff, “Integrated optical Mach-Zehnder interfrometers as simazine imuunoprobes,” Sens Act B 38–39, 277–282 (1997). [CrossRef]
  28. F. Morichetti, A. Melloni, M. Martinelli, R. G. Heideman, A. Leinse, D. H. Geuzebroek, and A. Borreman, “Box-Shaped Dielectric Waveguides: A New Concept in Integrated Optics?” J. Light. Technol. 25(9), 2579–2589 (2007). [CrossRef]
  29. W. Lukosz and K. Tiefenthaler, “Sensitivity of integrated optical grating and prism couplers as (bio)-chemical sensors,” Sens. Act 15(3), 273–284 (1988). [CrossRef]
  30. W. Lukosz, “Principles and sensitivities of integrated optical and surface plasmon sensors for direct affinity and immunosensing,” Biosens. Bioelectron. 6(3), 215–225 (1991). [CrossRef]
  31. P. D. T. Huibers, “Models for the wavelength dependence of the index of refraction of water,” Appl. Opt. 36(16), 3785–3787 (1997). [CrossRef] [PubMed]
  32. Handbook of Chemistry and Physics, R. D. Weast, ed. (CRC Presse, Fla, 1978–79).
  33. J. Voros, “The Density and Refractive Index of Adsorbing Protein Layers,” Biophys. J. 87(1), 553–561 (2004). [CrossRef] [PubMed]
  34. H. Zappe, Introduction to Semiconductor Integrated Optics (Artech House), Chap. 7.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited