OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 8 — Apr. 12, 2010
  • pp: 8213–8219

Inline holographic coherent anti-Stokes Raman microscopy

Qian Xu, Kebin Shi, Haifeng Li, Kerkil Choi, Ryoichi Horisaki, David Brady, Demetri Psaltis, and Zhiwen Liu  »View Author Affiliations


Optics Express, Vol. 18, Issue 8, pp. 8213-8219 (2010)
http://dx.doi.org/10.1364/OE.18.008213


View Full Text Article

Enhanced HTML    Acrobat PDF (432 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a simple approach for inline holographic coherent anti-Stokes Raman scattering (CARS) microscopy, in which a layer of uniform nonlinear medium is placed in front of a specimen to be imaged. The reference wave created by four-wave mixing in the nonlinear medium can interfere with the CARS signal generated in the specimen to result in an inline hologram. We experimentally and theoretically investigate the inline CARS holography and show that it has chemical selectivity and can allow for three-dimensional imaging.

© 2010 OSA

OCIS Codes
(090.0090) Holography : Holography
(180.0180) Microscopy : Microscopy
(300.6230) Spectroscopy : Spectroscopy, coherent anti-Stokes Raman scattering

ToC Category:
Microscopy

History
Original Manuscript: December 23, 2009
Revised Manuscript: February 26, 2010
Manuscript Accepted: March 10, 2010
Published: April 5, 2010

Virtual Issues
Vol. 5, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Qian Xu, Kebin Shi, Haifeng Li, Kerkil Choi, Ryoichi Horisaki, David Brady, Demetri Psaltis, and Zhiwen Liu, "Inline holographic coherent anti-Stokes Raman microscopy," Opt. Express 18, 8213-8219 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-8-8213


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. A. Benton, and V. M. Bove, Jr., Holographic Imaging (Wiley-Interscience, Hoboken, NJ, USA, 2008).
  2. H. J. Coufal, D. Psaltis, G. T. Sincerbox, A. M. Glass, and M. J. Cardillo, Holographic Data Storage (Springer, New York, NY, USA, 2003).
  3. B. W. Schilling, T. C. Poon, G. Indebetouw, B. Storrie, K. Shinoda, Y. Suzuki, and M. H. Wu, “Three-dimensional holographic fluorescence microscopy,” Opt. Lett. 22(19), 1506–1508 (1997). [CrossRef]
  4. J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photonics 2(3), 190–195 (2008). [CrossRef]
  5. C. L. Hsieh, R. Grange, Y. Pu, and D. Psaltis, “Three-dimensional harmonic holographic microcopy using nanoparticles as probes for cell imaging,” Opt. Express 17(4), 2880–2891 (2009). [CrossRef] [PubMed]
  6. Y. Pu, M. Centurion, and D. Psaltis, “Harmonic holography: a new holographic principle,” Appl. Opt. 47(4), A103–A110 (2008). [CrossRef] [PubMed]
  7. J. X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: Instrumentation, theory, and applications,” J. Phys. Chem. B 108(3), 827–840 (2004). [CrossRef]
  8. M. D. Duncan, J. Reintjes, and T. J. Manuccia, “Scanning coherent anti-Stokes Raman microscope,” Opt. Lett. 7(8), 350–352 (1982). [CrossRef] [PubMed]
  9. A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-Dimensional Vibrational Imaging by Coherent Anti-Stokes Raman Scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999). [CrossRef]
  10. C. Heinrich, S. Bernet, and M. Ritsch-Marte, “Wide-field coherent anti-Stokes Raman scattering microscopy,” Appl. Phys. Lett. 84(5), 816–818 (2004). [CrossRef]
  11. I. Toytman, K. Cohn, T. Smith, D. Simanovskii, and D. Palanker, “Wide-field coherent anti-Stokes Raman scattering microscopy with non-phase-matching illumination,” Opt. Lett. 32(13), 1941–1943 (2007). [CrossRef] [PubMed]
  12. K. Shi, H. Li, Q. Xu, D. Psaltis, and Z. Liu, “Coherent anti-Stokes Raman holography for single-shot non-scanning chemically selective three-dimensional imaging,” Phys. Rev. Lett. , 104, (2010). [CrossRef] [PubMed]
  13. A. J. Devaney, “Geophysical Diffraction Tomography,” IEEE Trans. Geosci. Rem. Sens. 22(1), 3–13 (1984). [CrossRef]
  14. D. J. Brady, K. Choi, D. L. Marks, R. Horisaki, and S. Lim, “Compressive Holography,” Opt. Express 17(15), 13040–13049 (2009). [CrossRef] [PubMed]
  15. E. Candès and J. Romberg, “Sparsity and incoherence in compressive sampling,” Inverse Probl. 23(3), 969–985 (2007). [CrossRef]
  16. J. M. Bioucas-Dias and M. A. T. Figueiredo, “A new TwIST: Two-step iterative shrinkage/thresholding algorithms for image restoration,” IEEE Trans. Image Process. 16(12), 2992–3004 (2007). [CrossRef] [PubMed]
  17. Y. R. Shen, The principles of nonlinear optics (Wiley-Interscience, New York, USA, 1984).
  18. M. Born, and E. Wolf, Principles of Optics (Cambridge University Press, Cambridge, England, 1999).
  19. J. Van Roey, J. Vanderdonk, and P. E. Lagasse, “Beam-Propagation Method - Analysis and Assessment,” J. Opt. Soc. Am. 71(7), 803–810 (1981). [CrossRef]
  20. E. Nichelatti and G. Pozzi, “Improved beam propagation method equations,” Appl. Opt. 37(1), 9–21 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited