OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 8 — Apr. 12, 2010
  • pp: 8229–8238

Electrically tunable Yb-doped fiber laser based on a liquid crystal photonic bandgap fiber device

Christina B. Olausson, Lara Scolari, Lei Wei, Danny Noordegraaf, Johannes Weirich, Thomas T. Alkeskjold, Kim P. Hansen, and Anders Bjarklev  »View Author Affiliations


Optics Express, Vol. 18, Issue 8, pp. 8229-8238 (2010)
http://dx.doi.org/10.1364/OE.18.008229


View Full Text Article

Enhanced HTML    Acrobat PDF (393 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate electrical tunability of a fiber laser using a liquid crystal photonic bandgap fiber. Tuning of the laser is achieved by combining the wavelength filtering effect of a tunable liquid crystal photonic bandgap fiber device with an ytterbium-doped photonic crystal fiber. We fabricate an all-spliced laser cavity based on the liquid crystal photonic bandgap fiber mounted on a silicon assembly, a pump/signal combiner with single-mode signal feed-through and an ytterbium-doped photonic crystal fiber. The laser cavity produces a single-mode output and is tuned in the range 1040-1065 nm by applying an electric field to the silicon assembly.

© 2010 OSA

OCIS Codes
(230.3720) Optical devices : Liquid-crystal devices
(060.5295) Fiber optics and optical communications : Photonic crystal fibers
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: December 21, 2009
Revised Manuscript: March 11, 2010
Manuscript Accepted: March 16, 2010
Published: April 5, 2010

Citation
Christina B. Olausson, Lara Scolari, Lei Wei, Danny Noordegraaf, Johannes Weirich, Thomas T. Alkeskjold, Kim P. Hansen, and Anders Bjarklev, "Electrically tunable Yb-doped fiber laser based on a liquid crystal photonic bandgap fiber device," Opt. Express 18, 8229-8238 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-8-8229


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. St. J. Russell, “Photonic Crystal Fibers,” Science 299(5605), 358–362 (2003). [CrossRef] [PubMed]
  2. N. M. Litchinitser, S. C. Dunn, P. E. Steinvurzel, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, “Application of an ARROW model for designing tunable photonic devices,” Opt. Express 12(8), 1540–1550 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-8-1540 . [CrossRef] [PubMed]
  3. S. Gauza, C. H. Wen, S. T. Wu, N. Janarthanan, and C. S. Hsu, “Super high birefringence isothiocyanato biphenyl-bistolane liquid crystals,” Jpn. J. Appl. Phys. 43(No. 11A), 7634–7638 (2004). [CrossRef]
  4. S. T. Wu, Q. T. Zhang, and S. Marder, “High dielectric dopants for low voltage liquid crystal operation,” Jpn. J. Appl. Phys. 37(Part 2, No. 10B), L1254–L1256 (1998). [CrossRef]
  5. B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, “Microstructured optical fiber devices,” Opt. Express 9(13), 698–713 (2001), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-9-13-698 . [CrossRef] [PubMed]
  6. C. Kerbage, R. S. Windeler, B. J. Eggleton, P. Mach, M. Dolinski, and J. A. Rogers, “Tunable devices based on dynamic positioning of micro-fluids in micro-structured optical fiber,” Opt. Commun. 204(1-6), 179–184 (2002). [CrossRef]
  7. R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, “Tunable photonic band gap fiber,” in Optical Fiber Communication Conference and Exhibit,2002. OFC 2002, pp. 466–468.
  8. T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express 11(20), 2589–2596 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-20-2589 . [CrossRef] [PubMed]
  9. M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(4), 819–821 (2005). [CrossRef]
  10. L. Scolari, T. T. Alkeskjold, J. Riishede, A. Bjarklev, D. Hermann, A. Anawati, M. Nielsen, and P. Bassi, “Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers,” Opt. Express 13(19), 7483–7496 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-19-7483 . [CrossRef] [PubMed]
  11. F. Du, Y. Q. Lu, and S. T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85(12), 2181–2183 (2004). [CrossRef]
  12. T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. Hermann, A. Anawati, J. Broeng, J. Li, and S. T. Wu, “All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers,” Opt. Express 12(24), 5857–5871 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-24-5857 . [CrossRef] [PubMed]
  13. L. Scolari, T. T. Alkeskjold, and A. Bjarklev, “Tunable Gaussian filter based on tapered liquid crystal photonic bandgap fibre,” Electron. Lett. 42(22), 1270–1271 (2006). [CrossRef]
  14. D. Noordegraaf, L. Scolari, J. Lægsgaard, L. Rindorf, and T. T. Alkeskjold, “Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers,” Opt. Express 15(13), 7901–7912 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-13-7901 . [CrossRef] [PubMed]
  15. M. N. Petersen, L. Scolari, T. Tokle, T. T. Alkeskjold, S. Gauza, S.-T. Wu, and A. Bjarklev, “Noise filtering in a multi-channel system using a tunable liquid crystal photonic bandgap fiber,” Opt. Express 16(24), 20067–20072 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-24-20067 . [CrossRef] [PubMed]
  16. T. R. Woliński, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Domanski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wojcik, “Polarization effects in photonic liquid crystal fibers,” Meas. Sci. Technol. 18(10), 3061–3069 (2007). [CrossRef]
  17. T. R. Woliński, A. Czapla, S. Ertman, M. Tefelska, A. W. Domanski, E. Nowinowski-Kruszelnicki, and R. Dabrowski, “Tunable highly birefringent solid-core photonic liquid crystal fibers,” Opt. Quantum Electron. 39(12-13), 1021–1032 (2007). [CrossRef]
  18. D. C. Zografopoulos, E. E. Kriezis, and T. D. Tsiboukis, “Tunable highly birefringent bandgap-guiding liquid crystal microstructured fibers,” J. Lightwave Technol. 24(9), 3427–3432 (2006). [CrossRef]
  19. L. Wei, W. Xue, Y. Chen, T. T. Alkeskjold, and A. Bjarklev, “Optically fed microwave true-time delay based on a compact liquid-crystal photonic-bandgap-fiber device,” Opt. Lett. 34(18), 2757–2759 (2009). [CrossRef] [PubMed]
  20. V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett. 92(6), 061113 (2008). [CrossRef]
  21. A. Shirakawa, H. Maruyama, K. Ueda, C. B. Olausson, J. K. Lyngsø, and J. Broeng, “High-power Yb-doped photonic bandgap fiber amplifier at 1150-1200 nm,” Opt. Express 17(2), 447–454 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-2-447 . [CrossRef] [PubMed]
  22. L. Wei, E. Khomtchenko, T. T. Alkeskjold, and A. Bjarklev, “Photolithography of thick photoresist coating for electrically controlled liquid crystal photonic bandgap fiber devices,” Electron. Lett. 45(6), 326–327 (2009). [CrossRef]
  23. L. Wei, T. T. Alkeskjold, and A. Bjarklev, “Compact design of an electrically tunable and rotatable polarizer based on a liquid crystal photonic bandgap fiber,” IEEE Photon. Technol. Lett. 21(21), 1633–1635 (2009). [CrossRef]
  24. D. Noordegraaf, M. D. Nielsen, P. M. Skovgaard, S. Agger, K. P. Hansen, J. Broeng, C. Jakobsen, H. R. Simonsen, and J. Lægsgaard, “Pump Combiner for Air-Clad Fiber with PM Single-Mode Signal Feed-through,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CThGG6.
  25. J. Weirich, J. Laegsgaard, L. Scolari, L. Wei, T. T. Alkeskjold, and A. Bjarklev, “Biased liquid crystal infiltrated photonic bandgap fiber,” Opt. Express 17(6), 4442–4453 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-6-4442 . [CrossRef] [PubMed]
  26. J. Weirich, J. Laegsgaard, L. Wei, T. T. Alkeskjold, T. X. Wu, S. Wu, and A. Bjarklev, “Liquid crystal parameter analysis for tunable photonic bandgap fiber devices,” Opt. Express 18(5), 4074–4087 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-5-4074 . [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited