OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 8 — Apr. 12, 2010
  • pp: 8294–8299

Lidar signature from bubbles in the sea

James H. Churnside  »View Author Affiliations


Optics Express, Vol. 18, Issue 8, pp. 8294-8299 (2010)
http://dx.doi.org/10.1364/OE.18.008294


View Full Text Article

Enhanced HTML    Acrobat PDF (166 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The lidar signature from a collection of bubbles is proportional to the volume backscatter coefficient at a scattering angle of 180°. This quantity, calculated using a combination of geometric optics and diffraction, is proportional to the void fraction of the bubbles in the water for any bubble size distribution. The constant of proportionality is 233 m−1 sr−1 for clean bubbles, slightly less for bubbles coated with a thin layer of organic material, and as large as 1445 m−1 sr−1 for a thick coating of protein.

© 2010 OSA

OCIS Codes
(010.3640) Atmospheric and oceanic optics : Lidar
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(010.4458) Atmospheric and oceanic optics : Oceanic scattering

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: January 27, 2010
Revised Manuscript: March 19, 2010
Manuscript Accepted: March 29, 2010
Published: April 5, 2010

Citation
James H. Churnside, "Lidar signature from bubbles in the sea," Opt. Express 18, 8294-8299 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-8-8294


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. K. Woolf, “Bubbles and the air-sea transfer velocity of gasses,” Atmos.-Ocean 31, 517–540 (1993). [CrossRef]
  2. R. S. Bortkovskii, B. N. Egorov, V. M. Kattsov, and T. V. Pavlova, “Model estimates for the mean gas exchange between the ocean and the atmosphere under the conditions of the present-day climate and its changes expected in the 21st century,” Izv., Atmos. Ocean. Phys. 43(3), 378–383 (2007). [CrossRef]
  3. G. K. Westbrook, K. E. Thatcher, E. J. Rohling, A. M. Piotrowski, H. Pälike, A. H. Osborne, E. G. Nisbet, T. A. Minshull, M. Lanoisellé, R. H. James, V. Hühnerbach, D. Green, R. E. Fisher, A. J. Crocker, A. Chabert, C. Bolton, A. Beszczynska-Möller, C. Berndt, and A. Aquilina, “Escape of methane gas from the seabed along the West Spitsbergen continental margin,” Geophys. Res. Lett. 36(15), L15608 (2009), doi:. [CrossRef]
  4. E. A. Solomon, M. Kastner, I. R. MacDonald, and I. Leifer, “Considerable methane fluxes to the atmosphere from hydrocarbon seeps in the Gulf of Mexico,” Nat. Geosci. 2(8), 561–565 (2009). [CrossRef]
  5. W. C. Keene, H. Maring, J. R. Maben, D. J. Kieber, A. A. P. Pszenny, E. E. Dahl, M. A. Izaguirre, A. J. Davis, M. S. Long, X. L. Zhou, L. Smoydzin, and R. Sander, “Chemical and physical characteristics of nascent aerosols produced by bursting bubbles at a model air-sea interface,” J. Geophys. Res. 112(D21), D21202 (2007), doi:. [CrossRef]
  6. A. Sorooshian, L. T. Padró, A. Nenes, G. Feingold, A. McComiskey, S. P. Hersey, H. Gates, H. H. Jonsson, S. D. Miller, G. L. Stephens, R. C. Flagan, and J. H. Seinfeld, “On the link between ocean biota emissions, aerosol, and maritime clouds: Airborne, ground, and satellite measurements off the coast of California,” Global Biogeochem. Cycles 23(4), GB4007 (2009), doi:. [CrossRef]
  7. M. R. Loewen and W. K. Melville, “An experimental investigation of the collective oscillations of bubble plumes entrained by breaking waves,” J. Acoust. Soc. Am. 95(3), 1329–1343 (1994). [CrossRef]
  8. J. Park, M. Garcés, D. Fee, and G. Pawlak, “Collective bubble oscillations as a component of surf infrasound,” J. Acoust. Soc. Am. 123(5), 2506–2512 (2008). [CrossRef] [PubMed]
  9. M. V. Hall, “A comprehensive model of wind-generated bubbles in the ocean and predictions of the effects on sound propagation at frequencies up to 40 kHz,” J. Acoust. Soc. Am. 86(3), 1103–1117 (1989). [CrossRef]
  10. P. A. Hwang and W. J. Teague, “Low-frequency resonant scattering of bubble clouds,” J. Atmos. Ocean. Technol. 17(6), 847–853 (2000). [CrossRef]
  11. X. Zhang, M. Lewis, and B. Johnson, “Influence of bubbles on scattering of light in the ocean,” Appl. Opt. 37(27), 6525–6536 (1998). [CrossRef]
  12. E. J. Terrill, W. K. Melville, and D. Stramski, “Bubble entrainment by breaking waves and their influence on optical scattering in the upper ocean,” J. Geophys. Res. 106(C8), 16815–16823 (2001). [CrossRef]
  13. X. D. Zhang, M. Lewis, M. Lee, B. Johnson, and G. Korotaev, “The volume scattering function of natural bubble populations,” Limnol. Oceanogr. 47, 1273–1282 (2002). [CrossRef]
  14. X. D. Zhang, M. Lewis, W. P. Bissett, B. Johnson, and D. Kohler, “Optical influence of ship wakes,” Appl. Opt. 43(15), 3122–3132 (2004). [CrossRef] [PubMed]
  15. M. M. Krekova, G. M. Krekov, and V. S. Shamanaev, “Influence of air bubbles in seawater on the formation of lidar returns,” J. Atmos. Ocean. Technol. 21(5), 819–824 (2004). [CrossRef]
  16. L. P. Su, W. J. Zhao, X. Y. Hu, D. M. Ren, and X. Z. Liu, “Simple lidar detecting wake profiles,” J. Opt. A, Pure Appl. Opt. 9(10), 842–847 (2007). [CrossRef]
  17. W. Li, K. Yang, M. Xia, J. Rao, and W. Zhang, “Influence of characteristics of micro-bubble clouds on backscatter lidar signal,” Opt. Express 17(20), 17772–17783 (2009). [CrossRef] [PubMed]
  18. W. P. Arnott and P. L. Marston, “Optical glory of small freely rising gas bubbles in water: observed and computed cross-polarized backscattering patterns,” J. Opt. Soc. Am. A 5(4), 496–506 (1988). [CrossRef]
  19. P. L. Marston and D. S. Langley, “Glory- and rainbow-enhanced acoustic backscatter from fluid spheres: Models for diffracted axial focusing,” J. Acoust. Soc. Am. 73(5), 1464–1475 (1983). [CrossRef]
  20. B. D. Johnson and R. C. Cooke, “Generation of stabilized microbubbles in seawater,” Science 213(4504), 209–211 (1981). [CrossRef] [PubMed]
  21. R. E. Glazman, “Effects of adsorbed films on gas bubble radial oscillations,” J. Acoust. Soc. Am. 74(3), 980–986 (1983). [CrossRef]
  22. E. C. Monahan and H. G. Dam, “Bubbles: An estimate of their role in the global oceanic flux of carbon,” J. Geophys. Res. 106(C5), 9377–9383 (2001). [CrossRef]
  23. W. Li, K. Yang, M. Xia, D. Tan, X. Zhang, and J. Rao, “Computation for angular distribution of scattered light on a coated bubble in water,” J. Opt. A, Pure Appl. Opt. 8(10), 926–931 (2006). [CrossRef]
  24. C. Cox and W. Munk, “Measurement of the roughness of the sea surface from photographs of the Sun’s glitter,” J. Opt. Soc. Am. 44(11), 838–850 (1954). [CrossRef]
  25. G. B. Deane and M. D. Stokes, “Scale dependence of bubble creation mechanisms in breaking waves,” Nature 418(6900), 839–844 (2002). [CrossRef] [PubMed]
  26. M. V. Trevorrow, “Measurements of near-surface bubble plumes in the open ocean with implications for high-frequency sonar performance,” J. Acoust. Soc. Am. 114(5), 2672–2684 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited