OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 8 — Apr. 12, 2010
  • pp: 8300–8310

Thermal and optical properties of the femtosecond-laser-structured and stress-induced birefringent regions in sapphire

Junko Morikawa, Akihiro Orie, Toshimasa Hashimoto, and Saulius Juodkazis  »View Author Affiliations

Optics Express, Vol. 18, Issue 8, pp. 8300-8310 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1370 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Temperature diffusivity of laser micro-structured regions in sapphire is determined by a temperature wave method with a lateral resolution reduced to ~ 10 μm using a directly sputtered micro-sensor and heater. A record high reduction of the temperature diffusivity of sapphire by 12% from its (1.26±0.02)×10-5 m2/s in-bulk value inside the femtosecond laser-structured volumes is determined; in a BK7 glass (~ 4.8×10-7 m2/s), a 2% decrease of the thermal diffusivity has been observed. Origin of the reduction is consistent with disorder and scattering of phonons around the laser photo-modified micro-volumes. The stress-induced birefringence is directly measured by polariscopy together with its radial distribution, and azimuthal orientation of the polarization ellipsis near the laser structured regions in sapphire. The maximum birefringence of Δn≃1×10-3 is achieved without crack formation and corresponds to a local stress of ~ 1.3 GPa. The stress (and birefringence) decay radially with a single-exponential constant of τR = 24 μm while the azimuthal orientation of the polarization ellipsis is spiraling around the laser structured volume. Such structures are promising in waveguiding and lasing applications of optical vortices where spatial control of birefringence and optical activity are required.

© 2010 Optical Society of America

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(220.4000) Optical design and fabrication : Microstructure fabrication
(160.1245) Materials : Artificially engineered materials
(160.1585) Materials : Chiral media

ToC Category:

Original Manuscript: February 2, 2010
Revised Manuscript: March 26, 2010
Manuscript Accepted: March 29, 2010
Published: April 6, 2010

Junko Morikawa, Akihiro Orie, Toshimasa Hashimoto, and Saulius Juodkazis, "Thermal and optical properties of the femtosecond-laser-structured and stress-induced birefringent regions in sapphire," Opt. Express 18, 8300-8310 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, "Ultrafast laser written active devices," Laser Photon. Rev. 3, 535-544 (2009). [CrossRef]
  2. S. K. Sundaram and E. Mazur, "Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses," Nature Mat. 1, 217-224 (2002). [CrossRef]
  3. Y. Lan, A. J. Minnich, G. Chen, and Z. Ren, "Enhancement of thermoelectric figure-of-merit by a bulk nanostructuring approach," Adv. Func. Mat.,  20, 357-376 (2010). [CrossRef]
  4. S. Juodkazis, V. Mizeikis, and H. Misawa, "Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications," J. Appl. Phys. 106, 051101 (2009). [CrossRef]
  5. S. Sowa, W. Watanabe, T. Tamaki, J. Nishii, and K. Itoh, "Symmetric waveguides in poly(methyl methacrylate) fabricated by femtosecond laser pulses," Opt. Express 14, 291-297 (2006). [CrossRef] [PubMed]
  6. S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, "Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics," Appl. Phys. A 77, 109-111 (2003). [CrossRef]
  7. L. Shah, A. Arai, S. Eaton, and P. Herman, "Waveguide writing in fused silica with a femtosecond fiber laser at 522 nm and 1 MHz repetition rate," Opt. Express 13, 1999-2006 (2005). [CrossRef] [PubMed]
  8. D. M. Krol, "Femtosecond laser modification of glass," J. Non-Cryst. Sol. 354, 416-424 (2009). [CrossRef]
  9. G. Cerullo, R. Osellame, S. Taccheo, M. Marangoni, D. Polli, R. Ramponi, P. Laporta, and S. D. Silvestri, "Femtosecond micromachining of symmetric waveguides at 1.5μm by astigmatic beam focusing," Opt. Lett. 27, 1938-1940 (2002). [CrossRef]
  10. J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, and S. N. A. Tünnermann, "Femtosecond laser written stress-induced Nd:Y3Al5O12(Nd:YAG) channel waveguide laser," Appl. Phys. B 97, 251-255 (2009). [CrossRef]
  11. A. Benayas, D. Jaque, B. McMillen, and K. P. Chen, "High repetition rate UV ultrafast laser inscription of buried channel waveguides in sapphire: Fabrication and fluorescence imaging via ruby R lines," Opt. Express 17, 10076-10081 (2009). [CrossRef] [PubMed]
  12. Z. Zhu and T. G. Brown, "Stress-induced birefringence in microstructured optical fibers," Opt. Lett. 28, 2306-2308 (2003). [CrossRef] [PubMed]
  13. G. Cheng, K. Mishchik, C. Mauclair, E. Audouard, and R. Stoian, "Ultrafast laser photo inscription of polarization sensitive devices in bulk silica glass," Opt. Express 17, 9515-9525 (2009). [CrossRef] [PubMed]
  14. J. Siebenmorgen, T. Calmano, O. Hellmig, K. Petermann, and G. Huber, "Efficient femtosecond laser written Nd:YAG channel waveguide laser with an output power of more than 1 W,", Technical Digest, CLEO/Europe-EQEC Conference, 2009, paper CJ7.1.
  15. J. Morikawa, C. Leong, T. Hashimoto, T. Ogawa, Y. Urata, S. Wada, M. Higuchi, and J.-I. Takahashi, "Thermal conductivity/diffusivity of Nd3+ doped GdVO4, YVO4, LuVO4,and Y3Al5O12 by temperature wave analysis," J. Appl. Phys. 103, 063522 (2008). [CrossRef]
  16. S. M. Eaton, H. Zhang, M. L. Ng, J. Z. Li, W. J. Chen, S. Ho, and P. R. Herman, "Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides," Opt. Express 16, 9443-9458 (2008). [CrossRef] [PubMed]
  17. J. Morikawa and T. Hashimoto, "Thermal diffusivity of aromatic polyimide thin films by temperature wave analysis," J. Appl. Phys. 105, 113506 (2009). [CrossRef]
  18. Y. Bellouard, M. Dugan, A. A. Said, and P. Bado, "Thermal conductivity contrast measurement of fused silica exposed to low-energy femtosecond laser pulses," Appl. Phys. Lett. 89, 161911 (2006). [CrossRef]
  19. T. Hashimoto, S. Juodkazis, and H. Misawa, "Void recording in silica," Appl. Phys. A 83, 337-340 (2006). [CrossRef]
  20. A. Marcinkevicius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, "Effect of refractive index-mismatch on laser microfabrication in silica glass," Appl. Phys. A. 76, 257-260 (2003). [CrossRef]
  21. E. E. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, "Laser-matter interaction in a bulk of a transparent solid: confined micro-explosion and void formation," Phys. Rev. B 73, 214101 (2006). [CrossRef]
  22. M. Shribak and R. Oldenbourg, "Techniques for fast and sensitive measurements of two-dimensional birefringence distributions," Appl. Opt. 42, 3009-3017 (2003). [CrossRef] [PubMed]
  23. E. Vanagas, I. Kudryashov, D. Tuzhilin, S. Juodkazis, S. Matsuo, and H. Misawa, "Surface nanostructuring of borosilicate glass by femtosecond nJ energy pulses," Appl. Phys. Lett. 82, 2901-2903 (2003). [CrossRef]
  24. S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, and H. Misawa, "Formation of embedded patterns in glasses using femtosecond irradiation," Appl. Phys. A 79, 1549-1553 (2004). [CrossRef]
  25. S. Juodkazis, K. Nishimura, H. Misawa, T. Ebisui, R. Waki, S. Matsuo, and T. Okada, "Control over the state of crystallinity: Sapphire," Adv. Mat. 18, 1361-1364 (2006). [CrossRef]
  26. S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. E. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, "Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multimegabar pressures," Phys. Rev. Lett. 96, 166101 (2006). [CrossRef] [PubMed]
  27. J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, "Thermal diffusivity in femtosecond-laser-structured micro-volumes of polymers," Appl. Phys. A. 98, 551-556 (2010). [CrossRef]
  28. B. Rogers, S. Pennathur, and J. Adams, Nanotechnology: understanding small systems (CRC Press Taylor and Francis Group, Boca Raton, 2008).
  29. K. Ueno, S. Juodkazis, T. Shibuya, V. Mizeikis, Y. Yokota, and H. Misawa, "Nano-particle-enhanced photopolymerization," J. Phys. Chem. C 113, 11720-11724 (2009). [CrossRef]
  30. M. J. Assael, K. D. Antoniadis, and J. Wu, "New measurements of the thermal conductivity of PMMA, BK7, and Pyrex 7740 up to 450K," Int. J. Thermophys. 292, 1257-1266 (2008). [CrossRef]
  31. Y. Bellouard, T. Colomb, C. Depeursinge, M. Dugan, A. A. Said, and P. Bado, "Nanoindentation and birefringence measurements on fused silica specimen exposed to low-energy femtosecond pulses," Opt. Express 14, 8360-8366 (2006). [CrossRef] [PubMed]
  32. H. Aben, Photoelasticity of glass (Springer-Verlag Berlin, 1993).
  33. E. Brasselet, N. Murazawa, H. Misawa, and S. Juodkazis, "Optical vortices from liquid crystal droplets," Phys. Rev. Lett. 103, 103903 (2009). [CrossRef] [PubMed]
  34. V. Mizeikis, S. Kimura, N. V. Surovtsev, V. Jarutis, A. Saito, H. Misawa, and S. Juodkazis, "Formation of amorphous sapphire by a femtosecond-pulse-induced micro-explosion," Appl. Surf. Sci. 255, 9745 - 9749 (2009). [CrossRef]
  35. L. Allen, M. J. Padgett, and M. Babiker, "The orbital angular momentum of light," Progress in Optics 39, 291-372 (1999). [CrossRef]
  36. M. Berry, "Making waves in physics," Nature 403, 21 (2000). [CrossRef] [PubMed]
  37. K. T. Gahagan and G. A. Swartzlander, "Optical vortex trapping of particles," Opt. Lett. 21, 827-829 (1996). [CrossRef] [PubMed]
  38. M. Harris, C. A. Hill, P. R. Tapster, and J. M. Vaughan, "Laser modes with helical wave fronts," Phys. Rev. A 49, 3119-3122 (1994). [CrossRef] [PubMed]
  39. G. Foo, D. M. Palacios, and G. A. Swartzlander, "Optical vortex coronagraph," Opt. Lett. 30, 3308-3310 (2005). [CrossRef]
  40. H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Direct observation of transfer of angular momentum to absorptive particles from a laser-beam with a phase singularity," Phys. Rev. Lett. 75, 826-829 (1995). [CrossRef] [PubMed]
  41. P. G. Eliseev, S. Juodkazis, T. Sugahara, H.-B. Sun, S. Matsuo, S. Sakai, and H. Misawa, "GaN surface ablation by fs-pulses: atomic force microscopy studies, accumulation effects," in Proceedings of High-Power Laser Ablation Conf. (SPIE Proc. 4065, 2000) pp.546-556.
  42. R. A. L. Jones, Soft Condensed Matter (Oxford University Press, 2002).
  43. A. K. Spilman and T. G. Brown, "Stress birefringent, space-variant wave plates for vortex illumination," Appl. Optics 46, 61-66 (2007). [CrossRef]
  44. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical alignment and spinning of laser-trapped microscopic particles," Nature 394, 348-350 (1998). [CrossRef]
  45. S. Juodkazis, M. Shikata, T. Takahashi, S. Matsuo, and H. Misawa, "Fast optical swithing by a laser manipulated microdroplet of liquid crystal," Appl. Phys. Lett. 74, 3627-3629 (1999). [CrossRef]
  46. S. Juodkazis, S. Matsuo, N. Murazawa, I. Hasegawa, and H. Misawa, "High-efficiency optical transfer of torque to a nematic liquid crystal," Appl. Phys. Lett. 82, 4657-4659 (2003). [CrossRef]
  47. E. Brasselet, Y. Izdebskaya, V. Shvedov, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, "Dynamics of optical spin-orbit coupling in uniaxial crystals," Opt. Lett. 34, 1021-1023 (2009). [CrossRef] [PubMed]
  48. A. Ciattoni, G. Cincotti, and C. Palma, "Angular momentum dynamics of a paraxial beam in a uniaxial crystal," Phys. Rev. E 67, 036618 (2003). [CrossRef]
  49. L. Marrucci, C. Manzo, and D. Paparo, "Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media," Phys. Rev. Lett. 96, 163905 (2006). [CrossRef] [PubMed]
  50. N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, "Mechanical equivalence of spin and orbital angular momentum of light: An optical spanner," Opt. Lett. 22, 52-54 (1997). [CrossRef] [PubMed]
  51. H. Misawa and S. Juodkazis, "Photophysics and photochemistry of a laser manipulated microparticle," Prog. Polym. Sci. 24, 665-697 (1999). [CrossRef]
  52. P. A. Williams, A. H. Rose, K. S. Lee, D. C. Conrad, G. W. Day, and P. D. Hale, "Optical, thermo-optic, electrooptic, and photoelastic properties of bismuth germanate ABi4Ge3O12B," Appl. Opt. 35, 3562 - 3569 (1996). [CrossRef] [PubMed]
  53. http://en.wikipedia.org/wiki/Hooke’s_law
  54. J. W. Kysar, "Path of light in near crack tip region in anisotropic medium and under mixed-mode loading," Int. J. Sol. Struct. 38, 5963-5973 (2001). [CrossRef]
  55. J. Reintjes and M. B. Schulz, "Photoelastic constants of selected ultrasonic delay-line crystals," J. Appl. Phys. 39, 5254 - 5258 (1968). [CrossRef]
  56. J. M. Winey, Y. M. Gupta, and D. E. Hare, "r-axis sound speed and elastic properties of sapphire single crystals," J. Appl. Phys. 90, 3109 - 3111 (2001). [CrossRef]
  57. T. A. Davis and K. Vedam, "Photoelastic properties of sapphire (α- Al2O3)," J. Appl. Phys. 38, 4556 - 4557 (1967).
  58. M. Beresna, T. Gertus, R. Tomasiunas, H. Misawa, and S. Juodkazis, "Three-dimensional modeling of the heat affected zone in laser machining applications," Laser Chemistry 2008, 976205 (2008). [CrossRef]
  59. K. Syassen, "Ruby under pressure," High Pressure Research 28, 75-126 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

Supplementary Material

» Media 1: PDF (295 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited