OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 8 — Apr. 12, 2010
  • pp: 8360–8366

Line coding to enhance the performance of 10-Gb/s CPFSK-ASK directly modulated signals

Zaineb Al-Qazwini and Hoon Kim  »View Author Affiliations

Optics Express, Vol. 18, Issue 8, pp. 8360-8366 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (10837 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The major drawback of frequency modulation (FM)-based directly modulated laser (DML) is its non-uniform FM response at low frequency range which gives rise to a severe pattern-dependent performance degradation. In this paper, we investigate the use of line coding to deplete the low-frequency spectral contents of the signal and thus to alleviate the degradation. We examine various line codes (8B/10B, 5B/6B, 7B/8B, 9B/10B, and 64B/66B) with continuous-phase frequency-shift keying/ amplitude-shift keying (CPFSK/ASK) signals generated using a DML and a delay interferometer. Experimental demonstrations are performed with a long pseudorandom bit sequence length of 220-1 and the bandwidth expansion by each code is taken into consideration. The results show that among the five codes we tested, 9B/10B code outperforms the other codes in terms of receiver sensitivity an dispersion tolerance. We demonstrate successful transmission of 10-Gb/s CPFSK-ASK signals over 65-km standard single-mode fiber with a bandwidth expansion of only 11.1%.

© 2010 OSA

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.2630) Fiber optics and optical communications : Frequency modulation

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: February 1, 2010
Revised Manuscript: April 4, 2010
Manuscript Accepted: April 5, 2010
Published: April 6, 2010

Zaineb Al-Qazwini and Hoon Kim, "Line coding to enhance the performance of 10-Gb/s CPFSK-ASK directly modulated signals," Opt. Express 18, 8360-8366 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. C. Lin, S. L. Lee, and C. L. Yang, “Spectral filtering of multiple directly modulated channels for WDM access networks by using an FP etalon,” J. Opt. Netw. 8(3), 306–316 (2009). [CrossRef]
  2. H. S. Chung, Y. G. Jang, and Y. Chung, “Directly modulated 10-Gb/s signal transmission over 320 km of negative dispersion fiber for regional metro network,” IEEE Photon. Technol. Lett. 15(9), 1306–1308 (2003). [CrossRef]
  3. I. Tomkos, B. Hallock, I. Roudas, R. Hesse, A. Boskovic, J. Nakano, and R. Vodhanel, “10-Gb/s transmission of 1.55-μm directly modulated signal over 100 km of negative dispersion fiber,” IEEE Photon. Technol. Lett. 13(7), 735–737 (2001). [CrossRef]
  4. M. D. Feuer, S. L. Sun-Yuan Huang, O. Woodward, Coskun, and M. Boroditsky, “Electronic dispersion compensation for a 10-gb/s link using a directly modulated laser,” IEEE Photon. Technol. Lett. 15(12), 1788–1790 (2003). [CrossRef]
  5. M. Du, L. G-. Nielsen, C. G. Jorgensen, and D. DiGiovanni, “Dispersion Compensated 10-Gb/s Directly Modulated Lasers for 6x80km, DWDM Metro Network Applications,” in Proceedings of ECOC2006, pp. 1–2.
  6. W. Idler, A. Klekamp, R. Dischler, and B. Wedding, “Advantages of frequency shift keying in 10 Gb/s systems,” in Proceedings of IEEE/LEOS Workshop on Advanced Modulation Formats, 2004, pp. 51–52.
  7. P. Baroni, V. Miot, A. Carena, and P. Poggiolini, “8B10B line coding to mitigate the non-uniform FM laser response of direct modulated CPFSK transmitter,” Opt. Express 16(10), 7279–7284 (2008). [CrossRef] [PubMed]
  8. E. Forestieri and G. Prati, “Analysis of delay-and-multiply optical FSK receivers with line-coding and non-flat laser FM response,” IEEE J. Sel. Areas Comm. 13(3), 543–556 (1995). [CrossRef]
  9. S. Saito, Y. Yamamoto, and T. Kimura, “S/N and error rate evaluation for an optical FSK-heterodyne detection system using semiconductor lasers,” IEEE J. Quantum Electron. 19(2), 180–193 (1983). [CrossRef]
  10. S. Ogita, Y. Kotaki, M. Matsuda, Y. Kuwahara, H. Onaka, H. Miyata, and H. Ishikawa, “FM response of narrow-linewidth, multielectrode λ/4 shift DFB laser,” IEEE Photon. Technol. Lett. 2(3), 165–166 (1990). [CrossRef]
  11. X. Widmer and P. A. Franaszek, “A DC-balanced, partitioned-block, 8B/10B transmission code,” IBM J. Res. Develop. 27(5), 440–451 (1983). [CrossRef]
  12. F. Effenberger, F. Yu, Z. Wang, and J. Gao, “A 9b10b line code for 2.5Gb/s upstream PONs,” in Proceedings of Optical Fiber Communication, 2009, pp. 1–3.
  13. X. Widmer, “DC balanced 7B/8B, 9B/10B, and partitioned DC balanced 12B/14B, 17B/20B, and 16B/18B transmission codes,” U.S. Patent 6614369 B1, Sept. 2, 2003.
  14. R. Walker, and R. Dugan, “64B/66B low-overhead coding proposal for serial links,” IEEE 802.3ah (10 GE) Task Force, 2000.
  15. H. Kim, S. K. Kim, H. Lee, S. Hwang, and Y. Oh, “A novel way to improve the dispersion-limited transmission distance of electroabsorption modulated lasers,” IEEE Photon. Technol. Lett. 18(8), 947–949 (2006). [CrossRef]
  16. K. J. Park, S. K. Shin, and Y. C. Chung, “Simple monitoring technique for WDM networks,” Electron. Lett. 35(5), 415–417 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited