OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 8 — Apr. 12, 2010
  • pp: 8367–8382

Coupled mode theory analysis of mode-splitting in coupled cavity system

Qiang Li, Tao Wang, Yikai Su, Min Yan, and Min Qiu  »View Author Affiliations


Optics Express, Vol. 18, Issue 8, pp. 8367-8382 (2010)
http://dx.doi.org/10.1364/OE.18.008367


View Full Text Article

Enhanced HTML    Acrobat PDF (3373 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We analyze transmission characteristics of two coupled identical cavities, of either standing-wave (SW) or traveling-wave (TW) type, based on temporal coupled mode theory. Mode splitting is observed for both directly (cavity-cavity) and indirectly (cavity-waveguide-cavity) coupled cavity systems. The effects of direct and indirect couplings, if coexisting in one system, can offset each other such that no mode splitting occurs and the original single-cavity resonant frequency is retained. By tuning the configuration of the coupled cavity system, one can obtain different characteristics in transmission spectra, including splitting in transmission, zero transmission, Fano-type transmission, electromagnetically-induced-transparency (EIT)-like transmission, and electromagnetically-induced-absorption (EIA)-like transmission. It is also interesting to notice that a side-coupled SW cavity system performs similarly to an under-coupled TW cavity. The results are useful for the design of cavity-based devices for integration in nanophotonics.

© 2010 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(250.5300) Optoelectronics : Photonic integrated circuits
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(230.4555) Optical devices : Coupled resonators

ToC Category:
Integrated Optics

History
Original Manuscript: February 4, 2010
Manuscript Accepted: March 26, 2010
Published: April 6, 2010

Citation
Qiang Li, Tao Wang, Yikai Su, Min Yan, and Min Qiu, "Coupled mode theory analysis of mode-splitting in coupled cavity system," Opt. Express 18, 8367-8382 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-8-8367


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Xia, L. Sekaric, and Y. A. Vlasov, "Ultra-compact optical buffers on a silicon chip," Nature Photon. 1, 65-71 (2007). [CrossRef]
  2. L. Zhang, M. Song, T. Wu, L. Zou, R. G. Beausoleil, and A. E. Willner, "Embedded ring resonators for microphotonic applications," Opt. Lett. 33, 1978-1980 (2008). [CrossRef] [PubMed]
  3. M. Notomi, E. Kuramochi, and T. Tanabe, "Large-scale arrays of ultrahigh-Q coupled nanocavities," Nature Photon. 2, 741-747 (2008). [CrossRef]
  4. S. Xiao, M. H. Khan, H. Shen, and M. Qi, "A highly compact third-order silicon microring add-drop filter with a very large free spectral range, a flat passband and a low delay dispersion," Opt. Express 15, 14765-14771 (2007). [CrossRef] [PubMed]
  5. K. Aoki, D. Guimard, M. Nishioka, M. Nomura, S. Iwamoto, and Y. Arakawa, "Coupling of quantum-dot light emission with a three-dimensional photonic-crystal nanocavity," Nature Photonics 2, 688-692 (2008). [CrossRef]
  6. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, "A picogram- and nanometre-scale photoniccrystal optomechanical cavity," Nature 459, 550-555 (2009). [CrossRef] [PubMed]
  7. T. Sunner, T. Stichel, S. H. Kwon, T.W. Schlereth, S. Hofling, M. Kamp, and A. Forchel, "Photonic crystal cavity based gas sensor," Appl. Phys. Lett. 92, 261112 (2008). [CrossRef]
  8. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, "Microring resonator channel dropping filters," IEEE J. Lightwave Technol. 15, 998-1005 (1997). [CrossRef]
  9. M. Okano, S. Kako, and S. Noda. "Coupling between a point-defect cavity and a line-defect waveguide in three-dimensional photonic crystal," Phys. Rev. B 68, 235110 (2003). [CrossRef]
  10. S. Fan, "Sharp asymmetric line shapes in side-coupled waveguide-cavity systems," Appl. Phys. Lett. 80, 908-910 (2002). [CrossRef]
  11. Y. Akahane, T. Asano, B. S. Song, and S. Noda, "Fine-tuned high-Q photonic-crystal nanocavity," Opt. Express 13, 1202-1214 (2005). [CrossRef] [PubMed]
  12. C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, "Coupling of modes analysis of resonance channel add-drop filters," IEEE J. Quantum Electron. 35, 1322-1331 (1999). [CrossRef]
  13. M. A. Popovic, C. Manolatou, and M. Watts, "Coupling-induced resonant frequency shifts in coupled dielectric multi-cavity filters," Opt. Express 14, 1208-1222 (2006). [CrossRef] [PubMed]
  14. Y. F. Xiao, X. B. Zou, W. Jiang, Y. L. Chen, and G. C. Guo, "Analog to multiple electromagnetically induced transparency in all-optical drop-filter systems," Phys. Rev. A 75, 063833 (2007). [CrossRef]
  15. K. Totsuka, N. Kobayashi, and M. Tomita, "Slow light in coupled-resonator-induced transparency," Phys. Rev. Lett. 98, 213904 (2007). [CrossRef] [PubMed]
  16. D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, "Coupled-resonator-induced transparency," Phys. Rev. A 69, 063804 (2004). [CrossRef]
  17. Z. Zhang, M. Dainese, L. Wosinski, and M. Qiu, "Resonance-splitting and enhanced notch depth in SOI ring resonators with mutual mode coupling," Opt. Express 16, 4621-4630 (2008). [CrossRef] [PubMed]
  18. B. E. Little, J. Laine, and S. T. Chu, "Surface-roughness-induced contradirectional coupling in ring and disk resonators," Opt. Lett. 22, 4-6 (1997). [CrossRef] [PubMed]
  19. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic crystals: molding the flow of light (second edition) (Princeton University Press, Princeton, 2008).
  20. Q. Li, F. F. Liu, Z. Y. Zhang, M. Qiu, and Y. K. Su, "System performances of on-chip silicon microring delay line for RZ, CSRZ, RZ-DB and RZ-AMI signals," J. Lightwave Technol. 26, 3744-3751 (2008). [CrossRef]
  21. Y. Li and M. Xiao, "Observation of quantum interference between dressed states in electromagnetically induced transparency," Phys. Rev. A 51, 4959-4962 (1995). [CrossRef] [PubMed]
  22. M. Lezama, S. Barreiro, and A. M. Akulshin, "Electromagnetically induced absorption," Phys. Rev. A 59, 4732 (1999). [CrossRef]
  23. X. Yang, M. Yu, D. L. Kwong, and C. W. Wong, "All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities," Phys. Rev. Lett. 102, 173902 (2009). [CrossRef] [PubMed]
  24. Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, "Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency," Phys. Rev. Lett. 96, 123901 (2006). [CrossRef] [PubMed]
  25. S. Manipatruni, P. Dong, Q. Xu, and M. Lipson, "Tunable superluminal propagation on a silicon micro-chip," Opt. Lett. 33, 2928-2930 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited