OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 8 — Apr. 12, 2010
  • pp: 8466–8481

Silicon nanocrystals on bottle resonators: Mode structure, loss mechanisms and emission dynamics

P. Bianucci, X. Wang, J. G. C. Veinot, and A. Meldrum  »View Author Affiliations

Optics Express, Vol. 18, Issue 8, pp. 8466-8481 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1426 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Bottle resonators can support high Q-factor whispering gallery modes (WGMs) and demonstrate a rich mode spectrum. Resonators were fabricated using a fiber tapering apparatus and were coated with a thin, smooth layer of luminescent silicon nanocrystals. The photoluminescence spectrum showed WGM peaks with Q-factors near 2,500; however, evanescent measurements showed that these modes are a composite of many modes with Q-factors exceeding 106, the highest yet seen for a silicon-nanocrystal-coated microresonators. The mode structure showed strong polarization and sensitivity to position within the bottle resonator. An analysis of loss mechanisms establishes surface roughness scattering as the limiting factor in these nanocrystal-coated bottle resonators in the absence of excited carriers.

© 2010 Optical Society of America

OCIS Codes
(230.5750) Optical devices : Resonators
(250.5230) Optoelectronics : Photoluminescence
(140.3948) Lasers and laser optics : Microcavity devices

ToC Category:
Optical Devices

Original Manuscript: February 12, 2010
Revised Manuscript: April 1, 2010
Manuscript Accepted: April 2, 2010
Published: April 7, 2010

P. Bianucci, X. Wang, J. G. Veinot, and A. Meldrum, "Silicon nanocrystals on bottle resonators: Mode structure, loss mechanisms and emission dynamics," Opt. Express 18, 8466-8481 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Pavesi, "Silicon-Based light sources for silicon integrated circuits," Adv. Opt. Technol. 2008, 416926 (2008).
  2. D. Jurbergs, E. Rogojina, L. Mangolini, and U. Kortshagen, "Silicon nanocrystals with ensemble quantum yields exceeding 60%," Appl. Phys. Lett. 88, 233116 (2006). [CrossRef]
  3. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, "Optical gain in silicon nanocrystals," Nature 408, 440-444 (2000). [CrossRef] [PubMed]
  4. M. Cazzanelli, D. Navarro-Urr’ıos, F. Riboli, N. Daldosso, L. Pavesi, J. Heitmann, L. X. Yi, R. Scholz, M. Zacharias, and U. Gosele, "Optical gain in monodispersed silicon nanocrystals," J. Appl. Phys. 96, 3164-3171 (2004). [CrossRef]
  5. A. Polman and R. G. Elliman, Towards the first silicon laser, vol. 93 of NATO Science Series (Kluwer Academic Publishers, The Netherlands, 2003).
  6. P. Fauchet, J. Ruan, H. Chen, L. Pavesi, L. Dal Negro, M. Cazzaneli, R. Elliman, N. Smith, M. Samoc, and B. Luther-Davies, "Optical gain in different silicon nanocrystal systems," Opt. Mater. 27, 745-749 (2005). [CrossRef]
  7. P. Bianucci, J. R. Rodr’ıguez, C. M. Clements, J. G. C. Veinot, and A. Meldrum, "Silicon nanocrystal luminescence coupled to whispering gallery modes in optical fibers," J. Appl. Phys. 105, 023108 (2009). [CrossRef]
  8. H. Chen, J. Sung, A. Tewary, M. Brongersma, J. Shin, and P. Fauchet, "Evidence for stimulated emission in silicon nanocrystal microspheres," in "Group IV Photonics, 2005. 2nd IEEE International Conference on," (2005), pp. 99-101.
  9. A. Beltaos and A. Meldrum, "Whispering gallery modes in silicon-nanocrystal-coated silica microspheres," J. Lumin. 126, 607-613 (2007). [CrossRef]
  10. A. Tewary, M. J. F. Digonnet, J. Sung, J. H. Shin, and M. L. Brongersma, "Silicon-Nanocrystal-Coated silica microsphere thermooptical switch," IEEE J. Sel. Top. Quantum Electron. 12, 1476-1479 (2006). [CrossRef]
  11. R. D. Kekatpure and M. L. Brongersma, "Fundamental photophysics and optical loss processes in si-nanocrystaldoped microdisk resonators," Phys. Rev. A 78, 023829 (2008). [CrossRef]
  12. M. Ghulinyan, D. Navarro-Urrıos, A. Pitanti, A. Lui, G. Pucker, and L. Pavesi, "Whispering-gallery modes and light emission from a si-nanocrystal-based single microdisk resonator," Opt. Express 16, 13218-13224 (2008). [CrossRef] [PubMed]
  13. C. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, C. Heyn, D. Heitmann, and T. Kipp, "Optical microcavities formed by semiconductor microtubes using a bottlelike geometry," Phys. Rev. Lett. 101, 127403 (2008). [CrossRef] [PubMed]
  14. S. Vicknesh, F. Li, and Z. Mi, "Optical microcavities on si formed by self-assembled InGaAs/GaAs quantum dot microtubes," Appl. Phys. Lett. 94, 081101 (2009). [CrossRef]
  15. M. P¨ollinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, "Ultra-high-Q tunable whispering-gallery-mode microresonator," Phys. Rev. Lett. 103, 053901 (2009). [CrossRef] [PubMed]
  16. G. Kakarantzas, T. E. Dimmick, T. A. Birks, R. L. Roux, and P. S. J. Russell, "Miniature all-fiber devices based on CO2 laser microstructuring of tapered fibers," Opt. Lett. 26, 1137-1139 (2001). [CrossRef]
  17. C. M. Hessel, M. A. Summers, A. Meldrum, M. Malac, and J. G. C. Veinot, "Direct patterning, conformal coating, and erbium doping of luminescent nc-si/sio2 thin films from solution processable hydrogen silsesquioxane," Adv. Mater. 19, 3513-3516 (2007). [CrossRef]
  18. T. Kipp, H. Welsch, C. Strelow, C. Heyn, and D. Heitmann, "Optical modes in semiconductor microtube ring resonators," Phys. Rev. Lett. 96, 077403 (2006). [CrossRef] [PubMed]
  19. Y. Rakovich, S. Balakrishnan, J. Donegan, T. Perova, R. Moore, and Y. Gun’ko, "The fabrication, fluorescence dynamics, and whispering gallery modes of aluminosilicate microtube resonators," Adv. Funct. Mater. 17, 1106 (2007). [CrossRef]
  20. L. Guimaraes and J. De Mendonca, "Analysis of the resonant scattering of light by cylinders at oblique incidence," Appl. Opt. 36, 8010-8019 (1997). [CrossRef]
  21. P. Bianucci, J. Rodr’ıguez, F. Lenz, J. G. C. Veinot, and A. Meldrum, "Mode structure in the luminescence of si-nc in cylindrical microcavities," Physica E 41, 1107 (2009). [CrossRef]
  22. Y. Louyer, D. Meschede, and A. Rauschenbeutel, "Tunable whispering-gallery-mode resonators for cavity quantum electrodynamics," Phys. Rev. A 72, 031801 (2005). [CrossRef]
  23. I. Teraoka and S. Arnold, "Enhancing the sensitivity of a whispering-gallery mode microsphere sensor by a high-refractive-index surface layer," J. Opt. Soc. Am. B 23, 1434-1441 (2006). [CrossRef]
  24. R. Kekatpure and M. Brongersma, "Quantification of free-carrier absorption in silicon nanocrystals with an optical microcavity," Nano. Lett. 8, 3787-3793 (2008). [CrossRef] [PubMed]
  25. F. P. Payne and J. P. R. Lacey, "A theoretical analysis of scattering loss from planar optical waveguides," Opt. Quantum Electron. 26, 977-986 (1994). [CrossRef]
  26. J. R. Rodr’ıguez, P. Bianucci, A. Meldrum, and J. G. C. Veinot, "Whispering gallery modes in hollow cylindrical microcavities containing silicon nanocrystals," Appl. Phys. Lett. 92, 131119 (2008). [CrossRef]
  27. N. Daldosso, M. Melchiorri, L. Pavesi, G. Pucker, F. Gourbilleau, S. Chausserie, A. Belarouci, X. Portier, and C. Dufour, "Optical losses and absorption cross-section of silicon nanocrystals," J. Lumin. 121, 344 (2006). [CrossRef]
  28. J. D. Jackson, Classical electrodynamics; 3rd ed. (Wiley, New York, NY, 1998). [PubMed]
  29. A. Meldrum, P. Bianucci, and F. Marsiglio, "Purcell effect in inhomogenously broadened ensembles of quantum dots coupled to optical microcavities," (2010).
  30. L. Dal Negro, M. Cazzanelli, L. Pavesi, S. Ossicini, D. Pacifici, G. Franzo, F. Priolo, and F. Iacona, "Dynamics of stimulated emission in silicon nanocrystals," Appl. Phys. Lett. 82, 4636-4638 (2003). [CrossRef]
  31. L. T. Canham, "Luminescence bands and their proposed origins in highly porous silicon," Phys. Status Solidi B 190, 9-14 (1995). [CrossRef]
  32. L. Tsybeskov, J. Vandyshev, and P. Fauchet, "Blue emission in porous silicon - oxygen-related photoluminescence," Phys. Rev. B 49, 7821-7824 (1994). [CrossRef]
  33. O. Schmidt, P. Kiesel, S. Mohta, and N. Johnson, "Resolving pm wavelength shifts in optical sensing," Appl. Phys. B 86, 593-600 (2007). [CrossRef]
  34. J. Homola, "Surface plasmon resonance sensors for detection of chemical and biological species," Chem. Rev. 108, 429-493 (2008). [CrossRef]
  35. R. F. Egerton, "New techniques in electron energy-loss spectroscopy," Micron 34, 127-129 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited