OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 8 — Apr. 12, 2010
  • pp: 8540–8555

50W CW visible laser source at 589nm obtained via frequency doubling of three coherently combined narrow-band Raman fibre amplifiers

Luke R. Taylor, Yan Feng, and Domenico Bonaccini Calia  »View Author Affiliations


Optics Express, Vol. 18, Issue 8, pp. 8540-8555 (2010)
http://dx.doi.org/10.1364/OE.18.008540


View Full Text Article

Enhanced HTML    Acrobat PDF (1180 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate the cascaded coherent collinear combination of a seed-split triplet of 1178nm high-power narrow-band (sub-1.5MHz) SBS-suppressed CW Raman fibre amplifiers via nested free-space constructive quasi-Mach-Zehnder interferometry, after analysing the combination of the first two amplifiers in detail. Near-unity combination and cascaded-combination efficiencies are obtained at all power levels up to a maximum P1178 > 60W. Frequency doubling of this cascaded-combined output in an external resonant cavity yields P589 > 50W with peak conversion efficiency η589 ~85%. We observe no significant differences between the SHG of a single, combined pair or triplet of amplifiers. Although the system represents a successful power scalability demonstrator for fibre-based Na-D2a-tuned mesospheric laser-guide-star systems, we emphasise its inherent wavelength versatility and consider its spectroscopic and near-diffraction-limited qualities equally well suited to other applications.

© 2010 OSA

OCIS Codes
(140.3510) Lasers and laser optics : Lasers, fiber
(140.3550) Lasers and laser optics : Lasers, Raman
(140.7300) Lasers and laser optics : Visible lasers
(190.2620) Nonlinear optics : Harmonic generation and mixing
(140.3298) Lasers and laser optics : Laser beam combining

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: January 11, 2010
Revised Manuscript: February 12, 2010
Manuscript Accepted: February 19, 2010
Published: April 8, 2010

Citation
Luke R. Taylor, Yan Feng, and Domenico Bonaccini Calia, "50W CW visible laser source at 589nm obtained via frequency doubling of three coherently combined narrow-band Raman fibre amplifiers," Opt. Express 18, 8540-8555 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-8-8540


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. www.eso.org/sci/facilities/develop/ao/images/AOF_Booklet.pdf
  2. C. A. Denman, P. D. Hillman, G. T. Moore, J. M. Telle, J. E. Preston, J. D. Drummond, and R. Q. Fugate, “50W CW Single Frequency 589-nm FASOR,” in Advanced Solid-State Photonics (TOPS), C. Denman and I. Sorokina, Eds., 98, OSA Trends in Optics and Photonics (Optical Society of America), paper 698 (2005).
  3. J. W. Dawson, A. Drobshoff, R. Beach, M. Messerly, S. Payne, A. Brown, D. M. Pennington, D. Bamford, S. Sharpe, and D. Cook, “Multi-watt 589nm fiber laser source,” Proc. SPIE 6102, 61021F (2006). [CrossRef]
  4. A. B. Rulkov, A. A. Ferin, S. V. Popov, J. R. Taylor, I. Razdobreev, L. Bigot, and G. Bouwmans, “Narrow-line, 1178nm CW bismuth-doped fiber laser with 6.4W output for direct frequency doubling,” Opt. Express 15(9), 5473–5476 (2007). [CrossRef] [PubMed]
  5. S. Sinha, C. Langrock, M. J. F. Digonnet, M. M. Fejer, and R. L. Byer, “Efficient yellow-light generation by frequency doubling a narrow-linewidth 1150 nm ytterbium fiber oscillator,” Opt. Lett. 31(3), 347–349 (2006). [CrossRef] [PubMed]
  6. A. Shirakawa, H. Murayama, K.-I. Ueda, C. B. Olausson, J. K. Lyngsø, B. J. Mangan, and J. Broeng, “High-power Yb-doped solid-core photonic bandgap fiber amplifier at 1150-1200nm,” presented at Photonics West, SPIE, Fibre Lasers VI: Technology, Systems, and Applications (2009).
  7. L. B. Sharma, “1.52W Frequency doubled fibre-based continuous wave orange laser radiation at 590nm,” Rev. Laser Eng. 33(2), 130–131 (2005).
  8. D. Georgiev, V. P. Gapontsev, A. G. Dronov, M. Y. Vyatkin, A. B. Rulkov, S. V. Popov, and J. R. Taylor, “Watts-level frequency doubling of a narrow line linearly polarized Raman fiber laser to 589nm,” Opt. Express 13(18), 6772–6776 (2005). [CrossRef] [PubMed]
  9. L. R. Taylor, Y. Feng, and D. B. Calia, “High power narrowband 589 nm frequency doubled fibre laser source,” Opt. Express 17(17), 14687–14693 (2009). [CrossRef] [PubMed]
  10. Y. Feng, L. R. Taylor, and D. Bonaccini Calia, “25W Raman-fibre-amplifier-based 589nm laser for laser guide star,” Opt. Express 17(21), 19021–19026 (2009). [CrossRef]
  11. www.ipgphotonics.com/Collateral/Documents/English-US/Summer_Newsletter_IPG_2009.pdf
  12. J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann, ““The rising power of fibre lasers and amplifiers,” (invited paper),” IEEE J. Sel. Top. QE 13(3), 537–545 (2007). [CrossRef]
  13. T. Y. Fan, “Laser beam combining for high power high radiance sources,” IEEE J. Sel. Top.QE 11(3), 567–577 (2005). [CrossRef]
  14. S. J. Augst, A. K. Goyal, R. L. Aggarwal, T. Y. Fan, and A. Sanchez, “Wavelength beam combining of ytterbium fiber lasers,” Opt. Lett. 28(5), 331–333 (2003). [CrossRef] [PubMed]
  15. P. Zhou, Z. Liu, X. Xu, Z. Chen, and X. Wang, “Beam quality factor for coherently combined fibre laser beams,” Opt. Laser Technol. 41(3), 268–271 (2009).
  16. J. Li, K. Duan, Y. Liu, Z. Dai, Z. Ou, and Y. Liu, “Accurate description of the beam from a coherently combined fibre laser array,” Opt. Commun. 282(7), 1380–1384 (2009). [CrossRef]
  17. B. Lei and Y. Feng, “Coherent combining of two fibre lasers in a Michelson-type coupled cavity,” Opt. Commun. 281(4), 739–743 (2008). [CrossRef]
  18. E. C. Cheung, J. G. Ho, G. D. Goodno, R. R. Rice, J. Rothenberg, P. Thielen, M. Weber, and M. Wickham, “Diffractive-optics-based beam combination of a phase-locked fiber laser array,” Opt. Lett. 33(4), 354–356 (2008). [CrossRef] [PubMed]
  19. G. T. Moore, “Binary coherent beam combination with mirror pairs,” Appl. Opt. 41(30), 6399–6409 (2002). [CrossRef] [PubMed]
  20. V. A. Kozlov, J. Hernández-Cordero, and T. F. Morse, “All-fiber coherent beam combining of fiber lasers,” Opt. Lett. 24(24), 1814–1816 (1999). [CrossRef]
  21. A. Shirakawa, T. Saitou, T. Sekiguchi, and K.-I. Ueda, “Coherent addition of fiber lasers by use of a fiber coupler,” Opt. Express 10(21), 1167–1172 (2002). [PubMed]
  22. A. Shirakawa, K. Matsuo, and K.-I. Ueda, “Fiber laser coherent array for power scaling, bandwidth narrowing, and beam direction control,” in Advanced Solid State Photonics, Technical Digest (Optical Society of America) paper MC3 (2005).
  23. L. R. Taylor, A. Friedenauer, V. Protopopov, Y. Feng, D. Bonaccini Calia, V. Karpov, W. Hackenberg, R. Holzlöhner, W. Clements, M. Hager, F. Lison, and W. Kaenders, “20W at 589nm via frequency doubling of coherently combined 2-MHz 1178nm CW signals amplified in Raman PM fiber amplifiers,” in The European Conference on Lasers and Electro-Optics and The European Quantum Electronics Conference, Technical Digest (CD) (Institute of Electrical and Electronics Engineers, 2009), paper PDA.7.
  24. www.toptica.com
  25. www.linos.com
  26. Y. Feng, L. R. Taylor, D. Bonaccini Calia, R. Holzlöhner, and W. Hackenberg, “39 W narrow linewidth Raman fiber amplifier with frequency doubling to 26.5 W at 589 nm,” presented at Frontiers in Optics, San Diego, post-deadline paper PDPA4 (2009).
  27. Y. Feng, L. R. Taylor, and D. B. Calia, “150 W highly-efficient Raman fiber laser,” Opt. Express 17(26), 23678–23683 (2009). [CrossRef]
  28. www.optiphase.com
  29. R. W. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983). [CrossRef]
  30. R. Xiao, J. Hou, M. Liu, and Z. F. Jiang, “Coherent combining technology of master oscillator power amplifier fiber arrays,” Opt. Express 16(3), 2015–2022 (2008). [CrossRef] [PubMed]
  31. S. J. Augst, T. Y. Fan, and A. Sanchez, “Coherent beam combining and phase noise measurements of ytterbium fiber amplifiers,” Opt. Lett. 29(5), 474–476 (2004). [CrossRef] [PubMed]
  32. M. Musha, T. Kanaya, K. Nakagawa, and K.-I. Ueda, “Intensity and frequency noise characteristics of two coherently-added injection-locked Nd:YAG lasers,” Appl. Phys. B 73, 209–314 (2001).
  33. www.phasicscorp.com
  34. K. Davis, M. Mewes, M. Andrews, N. van Druten, D. Durfee, D. Kurn, and W. Ketterle,, “Bose-Einstein condensation in a gas of sodium atoms,” Phys. Rev. Lett. 75(22), 3969–3973 (1995). [CrossRef] [PubMed]
  35. E. W. Streed, A. P. Chikkatur, T. L. Gustavson, M. Boyd, Y. Torii, D. Schneble, G. K. Campbell, D. E. Pritchard, and W. Ketterle, “Large atom number Bose-Einstein condensate machines,” Rev. Sci. Instr., 77, 2, 023106–01–023106–13 (2006).
  36. T. Nishikawa, A. Ozawa, Y. Nishida, M. Asobe, F. L. Hong, and T. W. Hänsch, “Efficient 494 mW sum-frequency generation of sodium resonance radiation at 589 nm by using a periodically poled Zn:LiNbO3 ridge waveguide,” Opt. Express 17(20), 17792–17800 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited