OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 8 — Apr. 12, 2010
  • pp: 8630–8646

A fast reconstruction algorithm for fluorescence molecular tomography with sparsity regularization

Dong Han, Jie Tian, Shouping Zhu, Jinchao Feng, Chenghu Qin, Bo Zhang, and Xin Yang  »View Author Affiliations


Optics Express, Vol. 18, Issue 8, pp. 8630-8646 (2010)
http://dx.doi.org/10.1364/OE.18.008630


View Full Text Article

Enhanced HTML    Acrobat PDF (1307 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Through the reconstruction of the fluorescent probe distributions, fluorescence molecular tomography (FMT) can three-dimensionally resolve the molecular processes in small animals in vivo. In this paper, we propose an FMT reconstruction algorithm based on the iterated shrinkage method. By incorporating a surrogate function, the original optimization problem can be decoupled, which enables us to use the general sparsity regularization. Due to the sparsity characteristic of the fluorescent sources, the performance of this method can be greatly enhanced, which leads to a fast reconstruction algorithm. Numerical simulations and physical experiments were conducted. Compared to Newton method with Tikhonov regularization, the iterated shrinkage based algorithm can obtain more accurate results, even with very limited measurement data.

© 2010 OSA

OCIS Codes
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(170.6960) Medical optics and biotechnology : Tomography

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: January 13, 2010
Revised Manuscript: March 25, 2010
Manuscript Accepted: April 1, 2010
Published: April 9, 2010

Virtual Issues
Vol. 5, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Dong Han, Jie Tian, Shouping Zhu, Jinchao Feng, Chenghu Qin, Bo Zhang, and Xin Yang, "A fast reconstruction algorithm for fluorescence molecular tomography with sparsity regularization," Opt. Express 18, 8630-8646 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-8-8630


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005). [CrossRef] [PubMed]
  2. R. Weissleder and U. Mahmood, “Molecular imaging,” Radiology 219(2), 316–333 (2001). [PubMed]
  3. J. K. Willmann, N. van Bruggen, L. M. Dinkelborg, and S. S. Gambhir, “Molecular imaging in drug development,” Nat. Rev. Drug Discov. 7(7), 591–607 (2008). [CrossRef] [PubMed]
  4. J. Tian, J. Bai, X. P. Yan, S. Bao, Y. Li, W. Liang, and X. Yang, “Multimodality molecular imaging,” IEEE Eng. Med. Biol. Mag. 27(5), 48–57 (2008). [CrossRef] [PubMed]
  5. C. H. Contag and M. H. Bachmann, “Advances in in vivo bioluminescence imaging of gene expression,” Annu. Rev. Biomed. Eng. 4(1), 235–260 (2002). [CrossRef] [PubMed]
  6. V. Ntziachristos, “Fluorescence molecular imaging,” Annu. Rev. Biomed. Eng. 8(1), 1–33 (2006). [CrossRef] [PubMed]
  7. X. Song, D. Wang, N. Chen, J. Bai, and H. Wang, “Reconstruction for free-space fluorescence tomography using a novel hybrid adaptive finite element algorithm,” Opt. Express 15(26), 18300–18317 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=OE-15-26-18300 . [CrossRef] [PubMed]
  8. Y. Lu, X. Zhang, A. Douraghy, D. Stout, J. Tian, T. F. Chan, and A. F. Chatziioannou, “Source Reconstruction for Spectrally-resolved Bioluminescence Tomography with Sparse a priori Information,” Opt. Express 17(10), 8062–8080 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-10-8062 . [CrossRef] [PubMed]
  9. P. Mohajerani, A. A. Eftekhar, J. Huang, and A. Adibi, “Optimal sparse solution for fluorescent diffuse optical tomography: theory and phantom experimental results,” Appl. Opt. 46(10), 1679–1685 (2007). [CrossRef] [PubMed]
  10. D. Wang, X. Song, and J. Bai, “Adaptive-mesh-based algorithm for fluorescence molecular tomography using an analytical solution,” Opt. Express 15(15), 9722–9730 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-15-9722 . [CrossRef] [PubMed]
  11. W. Bangerth and A. Joshi, “Adaptive finite element methods for the solution of inverse problems in optical tomography,” Inverse Probl. 24(3), 034011 (2008). [CrossRef]
  12. N. Cao, A. Nehorai, and M. Jacobs, “Image reconstruction for diffuse optical tomography using sparsity regularization and expectation-maximization algorithm,” Opt. Express 15(21), 13695–13708 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-21-13695 . [CrossRef] [PubMed]
  13. I. F. Gorodnitsky and B. D. Rao, “Sparse signal reconstruction from limited data using focuss: a re-weighted minimum norm algorithm,” IEEE Trans. Signal Process. 45(3), 600–616 (1997). [CrossRef]
  14. E. J. Candès, J. K. Romberg, and T. Tao, “Stable signal recovery from incomplete and inaccurate measurements,” Commun. Pure Appl. Math. 59(8), 1207–1223 (2006). [CrossRef]
  15. I. Daubechies, M. Defrise, and C. DeMol, “An iterative thresholding algorithm for linear inverse problems with a sparsity constraint,” Commun. Pure Appl. Math. 57(11), 1413–1457 (2004). [CrossRef]
  16. F. Gao, H. Zhao, L. Zhang, Y. Tanikawa, A. Marjono, and Y. Yamada, “A self-normalized, full time-resolved method for fluorescence diffuse optical tomography,” Opt. Express 16(17), 13104–13121 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-16-17-13104 . [CrossRef] [PubMed]
  17. Y. Tan and H. Jiang, “DOT guided fluorescence molecular tomography of arbitrarily shaped objects,” Med. Phys. 35(12), 5703–5707 (2008). [CrossRef]
  18. A. Joshi, W. Bangerth, and E. M. Sevick-Muraca, “Adaptive finite element based tomography for fluorescence optical imaging in tissue,” Opt. Express 12(22), 5402–5417 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-22-5402 . [CrossRef] [PubMed]
  19. J. Feng, K. Jia, G. Yan, S. Zhu, C. Qin, Y. Lv, and J. Tian, “An optimal permissible source region strategy for multispectral bioluminescence tomography,” Opt. Express 16(20), 15640–15654 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-20-15640 . [CrossRef] [PubMed]
  20. C. Qin, J. Tian, X. Yang, K. Liu, G. Yan, J. Feng, Y. Lv, and M. Xu, “Galerkin-based meshless methods for photon transport in the biological tissue,” Opt. Express 16(25), 20317–20333 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-25-20317 . [CrossRef] [PubMed]
  21. M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: Boundary and source conditions,” Med. Phys. 22(11), 1779–1792 (1995). [CrossRef] [PubMed]
  22. R. Tibshirani, “Regression Shrinkage and Selection via the Lasso,” J. R. Stat. Soc., B 58, 267–288 (1996).
  23. M. Elad, B. Matalon, and M. Zibulevsky, “Image denoising with shrinkage and redundant representations,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, New York2, 1924–1931 (2006).
  24. H. Minc, Nonnegative matrices, (Wiley, New York, 1988).
  25. M. T. Chu and J. L. Watterson, “On a multivariate eigenvalue problem, Part I: Algebraic theory and a power method,” SIAM J. Sci. Comput. 14(5), 1089–1106 (1993). [CrossRef]
  26. A. X. Cong and G. Wang, “A finite-element-based reconstruction method for 3D fluorescence tomography,” Opt. Express 13(24), 9847–9857 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-24-9847 . [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited