OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 9 — Apr. 26, 2010
  • pp: 8743–8758

Positioning and localization of two-wavelength interferograms for wavefront reconstruction with volume holographic media

Eduardo Acedo Barbosa  »View Author Affiliations


Optics Express, Vol. 18, Issue 9, pp. 8743-8758 (2010)
http://dx.doi.org/10.1364/OE.18.008743


View Full Text Article

Enhanced HTML    Acrobat PDF (1307 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This work studies both theoretically and experimentally the formation of the contour interference patterns generated by a two-wavelength real-time holographic interferometer. The resulting contour interference fringes are due to the intersection of the measured surface with parallel, equally spaced planes of constant elevation. The theoretical analysis describes how the spatial frequency of the elevation planes, their angular position, and the localization of the fringes depend on parameters of the optical setup. A theoretical model for fringe localization is developed and confirmed by the experiments, showing a strong dependence of the interferogram position on the slope of the studied surface. Due to the thick Bi12TiO20 crystal employed as the storage medium the Bragg selectivity of the holographic readout is also considered.

© 2010 OSA

OCIS Codes
(090.2880) Holography : Holographic interferometry
(090.7330) Holography : Volume gratings
(120.4630) Instrumentation, measurement, and metrology : Optical inspection
(160.5320) Materials : Photorefractive materials

ToC Category:
Holography

History
Original Manuscript: December 23, 2009
Revised Manuscript: February 19, 2010
Manuscript Accepted: February 22, 2010
Published: April 12, 2010

Citation
Eduardo Acedo Barbosa, "Positioning and localization of two-wavelength
interferograms for wavefront reconstruction 
with volume holographic media," Opt. Express 18, 8743-8758 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-9-8743


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Creath, Phase Measurement Techniques: Progress in Optics, vol. XXVI, (Elsevier Science Publishers 1988)
  2. D. C. Ghiglia, G. A. Mastin, and L. A. Romero, “Cellular-automata method. for phase unwrapping,” J. Opt. Soc. Am. 4(1), 267–280 (1987). [CrossRef]
  3. A. Spik and W. Robinson, “Investigation of the cellular automata method for phase unwrapping and its implementation on an array processor,” Opt. Lasers Eng. 14(1), 25–37 (1991). [CrossRef]
  4. M. Salvador, J. Prauzner, S. Köber, K. Meerholz, J. J. Turek, K. Jeong, and D. D. Nolte, “Three-dimensional holographic imaging of living tissue using a highly sensitive photorefractive polymer device,” Opt. Express 17(14), 11834–11849 (2009). [CrossRef] [PubMed]
  5. P. S. Lam, J. D. Gaskill, and J. C. Wyant, “Two-wavelength holographic interferometer,” Appl. Opt. 23(18), 3079–3081 (1984). [CrossRef] [PubMed]
  6. J. E. Millerd and N. J. Brock, “Holographic profilometry with a rhodium-doped barium titanate crystal and a diode laser,” Appl. Opt. 36(11), 2427–2431 (1997). [CrossRef] [PubMed]
  7. E. Hack, B. Frei, R. Kästle, and U. Sennhauser, “Additive-Subtractive Two-Wavelength ESPI Contouring by Using a Synthetic Wavelength Phase Shift,” Appl. Opt. 37(13), 2591–2597 (1998). [CrossRef]
  8. E. A. Barbosa and A. C. L. Lino, “Multiwavelength electronic speckle pattern interferometry for surface shape measurement,” Appl. Opt. 46(14), 2624–2631 (2007). [CrossRef] [PubMed]
  9. B. Breuckmann and W. Thieme, “Computer-Aided Analysis of Holographic Interferograms Using the Phase-Shift Method,” Appl. Opt. 24(14), 2145–2149 (1985). [CrossRef] [PubMed]
  10. I. Yamaguchi, S. Ohta, and J. Kato, “Surface contouring by phase-shifting digital holography,” Opt. Lasers Eng. 36(5), 417–428 (2001). [CrossRef]
  11. G. Pedrini, P. Fröning, H. J. Tiziani, and F. M. Santoyo, “Shape measurement of microscopic structures using digital holograms,” Opt. Commun. 164(4-6), 257–268 (1999). [CrossRef]
  12. I. Balboa, H. D. Ford, and R. P. Tatam, “Low-coherence optical fibre speckle interferometry,” Meas. Sci. Technol. 17(4), 605–616 (2006). [CrossRef]
  13. E. A. Barbosa, A. A. V. Filho, M. R. R. Gesualdi, B. G. Curcio, M. Muramatsu, and D. Soga, “Single-exposure, photorefractive holographic surface contouring with multiwavelength diode lasers,” J. Opt. Soc. Am. A 22(12), 2872–2879 (2005). [CrossRef]
  14. D. Carl, M. Fratz, M. Pfeifer, D. M. Giel, and H. Höfler, “Multiwavelength digital holography with autocalibration of phase shifts and artificial wavelengths,” Appl. Opt. 48(34), H1–H8 (2009). [CrossRef] [PubMed]
  15. E. A. Barbosa and J. F. Carvalho, “Surface analysis by two-diode laser photorefractive holography,” Appl. Phys. B 87(3), 417–423 (2007). [CrossRef]
  16. E. A. Barbosa, and A. O. Preto, Optical Metrology: Optical Measurement Systems for Industrial Inspection, Peter Lehman (Ed.) Proc. SPIE 7389 (2009).
  17. E. A. Barbosa, C. B. F. de Sousa, and W. M. Maffei, “Measurement of low-derivative surface lenses by two-laser holography with Bi12TiO20 crystals,” Appl. Opt. 48(27), 5114–5120 (2009). [CrossRef] [PubMed]
  18. C. M. Vest, Holographic Interferometry, Wiley, New York (1979).
  19. J. Blanco-Garoía, J. L. Fernández, and M. Pérez-Amor, “Fringe localization control in holographic interferometry,” Appl. Opt. 31(4), 488–496 (1992). [CrossRef] [PubMed]
  20. H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
  21. A. A. Kamshilin and M. P. Petrov, “Continuous reconstruction of holographic interferograms through anisotropic diffraction in photorefractive crystals,” Opt. Commun. 53(1), 23–26 (1985). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited