OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 9 — Apr. 26, 2010
  • pp: 8816–8823

An all-silicon, single-mode Bragg cladding rib waveguide

Ee Jin Teo, Andrew A. Bettiol, Boqian Xiong, Mark B. H. Breese, and Prashant T. Shuvan  »View Author Affiliations


Optics Express, Vol. 18, Issue 9, pp. 8816-8823 (2010)
http://dx.doi.org/10.1364/OE.18.008816


View Full Text Article

Enhanced HTML    Acrobat PDF (2997 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, we demonstrate a direct method of fabricating an all-silicon, single-mode Bragg cladding rib waveguide using proton beam irradiation and subsequent electrochemical etching. The Bragg waveguide consists of porous silicon layers with a low index core of 1.4 that is bounded by eight bilayers of alternating high and low refractive index of 1.4 and 2.4. Here, the ion irradiation acts to reduce the thickness of porous silicon formed, creating an optical barrier needed for lateral confinement. Single-mode guiding with losses as low as approximately 1 dB/cm were obtained for both TE and TM polarization over a broad range of wavelengths from 1525 nm to 1625 nm. Such an approach offers a method for monolithic integration of Bragg waveguides in silicon, without the need for multiple processes of depositing alternating materials.

© 2010 OSA

OCIS Codes
(130.3060) Integrated optics : Infrared
(130.5990) Integrated optics : Semiconductors
(160.3130) Materials : Integrated optics materials
(230.7370) Optical devices : Waveguides

ToC Category:
Integrated Optics

History
Original Manuscript: March 1, 2010
Revised Manuscript: April 8, 2010
Manuscript Accepted: April 11, 2010
Published: April 13, 2010

Citation
Ee Jin Teo, Andrew A. Bettiol, Boqian Xiong, Mark B. H. Breese, and Prashant T. Shuvan, "An all-silicon, single-mode Bragg cladding rib waveguide," Opt. Express 18, 8816-8823 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-9-8816


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, “Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,” Science 282(5387), 274–276 (1998). [CrossRef] [PubMed]
  2. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987). [CrossRef] [PubMed]
  3. J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282(5393), 1476–1478 (1998). [CrossRef] [PubMed]
  4. H. Schmidt, J. P. Dongliang Yin, Barber, and A. R. Hawkins, “Hollow-core waveguides and 2-D waveguide arrays for integrated optics of gases and liquids,” IEEE J. Sel. Top. Quantum Electron. 11(2), 519–527 (2005). [CrossRef]
  5. B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420(6916), 650–653 (2002). [CrossRef] [PubMed]
  6. P. Yeh, A. Yariv, and E. Marom, “Theory of Bragg fiber,” J. Opt. Soc. Am. 68(9), 1196 (1978). [CrossRef]
  7. P. Yeh, Optical Waves in Layered Media (Wiley, New York, United States 1988)
  8. Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998). [CrossRef] [PubMed]
  9. J. N. Winn, Y. Fink, S. Fan, and J. D. Joannopoulos, “Omnidirectional reflection from a one-dimensional photonic crystal,” Opt. Lett. 23(20), 1573–1575 (1998). [CrossRef]
  10. M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and J. D. Joannopoulos, “An all-dielectric coaxial waveguide,” Science 289(5478), 415–419 (2000). [CrossRef] [PubMed]
  11. Y. Yi, S. Akiyama, P. Bermel, X. Duan, and L. C. Kimerling, “On-chip Si-based Bragg cladding waveguide with high index contrast bilayers,” Opt. Express 12(20), 4775–4780 (2004). [CrossRef] [PubMed]
  12. L. Pavesi, “Porous silicon dielectric multilayers and microcavities,” Riv. Nuovo Cim. 20(10), 1–76 (1997). [CrossRef]
  13. A. Bruyant, G. Lerondel, P. J. Reece, and M. Gal, “All-silicon omnidirectional mirrors based on one-dimensional photonic crystals,” Appl. Phys. Lett. 82(19), 3227 (2003). [CrossRef]
  14. E. Xifré-Pérez, L. F. Marsal, J. Ferré-Borrull, and J. Pallarès, “Porous silicon omnidirectional mirrors and distributed Bragg reflectors for planar waveguide applications,” J. Appl. Phys. 102(6), 063111 (2007). [CrossRef]
  15. E. J. Teo, M. B. H. Breese, A. A. Bettiol, D. Mangaiyarkarasi, F. Champeaux, F. Watt, and D. J. Blackwood, “Multicolour Photoluminescence from Porous Silicon using Focused High-energy Helium Ions,” Adv. Mater. 18(1), 51–55 (2006). [CrossRef]
  16. D. Mangaiyarkarasi, M. B. H. Breese, Y. S. Ow, and C. Vijila, “Controlled blueshift of the resonant wavelength in porous silicon microcavities using ion irradiation,” Appl. Phys. Lett. 89(2), 021910 (2006). [CrossRef]
  17. E. J. Teo, M. B. H. Breese, E. P. Tavernier, A. A. Bettiol, F. Watt, M. H. Liu, and D. J. Blackwood, “Three-dimensional microfabrication in bulk silicon using high-energy protons,” Appl. Phys. Lett. 84(16), 3202 (2004). [CrossRef]
  18. M. B. H. Breese, F. J. T. Champeaux, E. J. Teo, A. A. Bettiol, and D. Blackwood, “Hole transport through proton-irradiated p-type silicon wafers during electrochemical anodisation,” Phys. Rev. B 73(3), 035428 (2006). [CrossRef]
  19. D. E. Aspnes, “Optical properties of thin films,” Thin Solid Films 89(3), 249–262 (1982). [CrossRef]
  20. D. Mangaiyarkarasi, M. B. H. Breese, and Y. S. Ow, “Fabrication of three dimensional porous silicon distributed Bragg reflectors,” Appl. Phys. Lett. 93(22), 221905 (2008). [CrossRef]
  21. http://www.rsoftdesign.com
  22. A. A. Bettiol, S. Venugopal Rao, E. J. Teo, J. A. van Kan, and F. Watt, “Fabrication of buried channel waveguides in photosensitive glass using proton beam writing,” Appl. Phys. Lett. 88(17), 171106 (2006). [CrossRef]
  23. P. Pirasteh, J. Charrier, Y. Dumeige, S. Haesaert, and P. Joubert, “Optical loss study of porous silicon and oxidized porous silicon planar waveguides,” J. Appl. Phys. 101(8), 083110 (2007). [CrossRef]
  24. V. Lehmann, F. Hofmann, F. Moller, and U. Gruing, “Resistivity of porous silicon: a surface effect,” Thin Solid Films 255(1-2), 20–22 (1995). [CrossRef]
  25. G. Z. Mashanovich, M. Milosevic, P. Matavulj, S. Stankovic, B. Timotijevic, P. Y. Yang, E. J. Teo, M. B. H. Breese, A. A. Bettiol, and G. T. Reed, “Silicon photonic waveguides for different wavelength regions,” Semicond. Sci. Technol. 23(6), 064002 (2008). [CrossRef]
  26. R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A, Pure Appl. Opt. 8(10), 840–848 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited