OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 9 — Apr. 26, 2010
  • pp: 8916–8922

Broadband external cavity tunable quantum dot lasers with low injection current density

X. Q. Lv, P. Jin, W. Y. Wang, and Z. G. Wang  »View Author Affiliations

Optics Express, Vol. 18, Issue 9, pp. 8916-8922 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (874 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Broadband grating-coupled external cavity laser, based on InAs/GaAs quantum dots, is achieved. The device has a wavelength tuning range from 1141.6 nm to 1251.7 nm under a low continuous-wave injection current density (458 A/cm2). The tunable bandwidth covers consecutively the light emissions from both the ground state and the 1st excited state of quantum dots. The effects of cavity length and antireflection facet coating on device performance are studied. It is shown that antireflection facet coating expands the tuning bandwidth up to ~150 nm, accompanied by an evident increase in threshold current density, which is attributed to the reduced interaction between the light field and the quantum dots in the active region of the device.

© 2010 OSA

OCIS Codes
(140.3410) Lasers and laser optics : Laser resonators
(140.3600) Lasers and laser optics : Lasers, tunable
(140.5960) Lasers and laser optics : Semiconductor lasers
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:
Lasers and Laser Optics

Original Manuscript: December 15, 2009
Revised Manuscript: March 19, 2010
Manuscript Accepted: April 1, 2010
Published: April 14, 2010

X. Q. Lv, P. Jin, W. Y. Wang, and Z. G. Wang, "Broadband external cavity tunable quantum dot lasers with low injection current density," Opt. Express 18, 8916-8922 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. C. Woodworth, D. T. Cassidy, and M. J. Hamp, “Sensitive absorption spectroscopy by use of an asymmetric multiple-quantum-well diode laser in an external cavity,” Appl. Opt. 40(36), 6719–6724 (2001). [CrossRef]
  2. J. T. Olesberg, M. A. Arnold, C. Mermelstein, J. Schmitz, and J. Wagner, “Tunable laser diode system for noninvasive blood glucose measurements,” Appl. Spectrosc. 59(12), 1480–1484 (2005). [CrossRef]
  3. N. Kuramoto and K. Fujii, “Volume determination of a silicon sphere using an improved interferometer with optical frequency tuning,” IEEE Trans. Instrum. Meas. 54(2), 868–871 (2005). [CrossRef]
  4. T. Tanaka, Y. Hibino, T. Hashimoto, M. Abe, R. Kasahara, and Y. Tohmori, “100-GHz spacing 8-channel light source integrated with external cavity lasers on planar lightwave circuit platform,” J. Lightwave Technol. 22(2), 567–573 (2004). [CrossRef]
  5. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22(5), 340–342 (1997). [CrossRef] [PubMed]
  6. H. Lim, J. F. de Boer, B. H. Park, E. C. W. Lee, R. Yelin, and S. H. Yun, “Optical frequency domain imaging with a rapidly swept laser in the 815-870 nm range,” Opt. Express 14(13), 5937–5944 (2006). [CrossRef] [PubMed]
  7. C. K. Chia, S. J. Chua, J. R. Dong, and S. L. Teo, “Ultrawide band quantum dot light emitting device by postfabrication laser annealing,” Appl. Phys. Lett. 90(6), 061101 (2007). [CrossRef]
  8. Z. Y. Zhang, Z. G. Wang, B. Xu, P. Jin, Z. Z. Sun, and F. Q. Liu, “High-performance quantum-dot superluminescent diodes,” IEEE Photon. Technol. Lett. 16(1), 27–29 (2004). [CrossRef]
  9. L. H. Li, M. Rossetti, A. Fiore, L. Occhi, and C. Velez, “Wide emission spectrum from superluminescent diodes with chirped quantum dot multilayers,” Electron. Lett. 41(1), 41–43 (2005). [CrossRef]
  10. S. K. Ray, K. M. Groom, M. D. Beattie, H. Y. Liu, M. Hopkinson, and R. A. Hogg, “Broad-band superluminescent light-emitting diodes incorporating quantum dots in compositionally modulated quantum wells,” IEEE Photon. Technol. Lett. 18(1), 58–60 (2006). [CrossRef]
  11. X. Q. Lv, N. Liu, P. Jin, and Z. G. Wang, “Broadband Emitting Superluminescent Diodes With InAs Quantum Dots in AlGaAs Matrix,” IEEE Photon. Technol. Lett. 20(20), 1742–1744 (2008). [CrossRef]
  12. Z. Y. Zhang, R. A. Hogg, B. Xu, P. Jin, and Z. G. Wang, “Realization of extremely broadband quantum-dot superluminescent light-emitting diodes by rapid thermal-annealing process,” Opt. Lett. 33(11), 1210–1212 (2008). [CrossRef] [PubMed]
  13. M. Sugawara, K. Mukai, and Y. Nakata, “Light emission spectra of columnar-shaped self-assembled InGaAs/GaAs quantum-dot lasers: Effect of homogeneous broadening of the optical gain on lasing characteristics,” Appl. Phys. Lett. 74(11), 1561–1563 (1999). [CrossRef]
  14. A. Kovsh, I. Krestnikov, D. Livshits, S. Mikhrin, J. Weimert, and A. Zhukov, “Quantum dot laser with 75 nm broad spectrum of emission,” Opt. Lett. 32(7), 793–795 (2007). [CrossRef] [PubMed]
  15. A. E. Zhukov and A. R. Kovsh, “Quantum dot diode lasers for optical communication systems,” Quantum Electron. 38(5), 409–423 (2008). [CrossRef]
  16. C. L. Tan, H. S. Djie, Y. Wang, C. E. Dimas, V. Hongpinyo, Y. H. Ding, and B. S. Ooi, “Wavelength tuning and emission width widening of ultrabroad quantum dash interband laser,” Appl. Phys. Lett. 93(11), 111101 (2008). [CrossRef]
  17. P. Eliseev, H. Li, A. Stintz, G. T. Liu, T. C. Newell, K. J. Malloy, and L. F. Lester, “Tunable grating-coupled laser oscillation and spectral hole burning in an InAs quantum-dot laser diode,” IEEE J. Quantum Electron. 36(4), 479–485 (2000). [CrossRef]
  18. H. Li, G. T. Liu, P. M. Varangis, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “150-nm tuning range in a grating-coupled external cavity quantum-dot laser,” IEEE Photon. Technol. Lett. 12(7), 759–761 (2000). [CrossRef]
  19. P. M. Varangis, H. Li, G. T. Liu, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Low-threshold quantum dot lasers with 201 nm tuning range,” Electron. Lett. 36(18), 1544–1545 (2000). [CrossRef]
  20. A. Biebersdorf, C. Lingk, M. De Giorgi, J. Feldmann, J. Sacher, M. Arzberger, C. Ulbrich, G. Böhm, M.-C. Amann, and G. Abstreiter, “Tunable single and dual mode operation of an external cavity quantum-dot injection laser,” J. Phys. D Appl. Phys. 36(16), 1928–1930 (2003). [CrossRef]
  21. C. Ni. Allen, P. J. Poole, P. Barrios, P. Marshall, G. Pakulski, S. Raymond, and S. Fafard, “External cavity quantum dot tunable laser through 1.55 μm,” Physica E 26, 372–376 (2005). [CrossRef]
  22. G. Ortner, C. Ni. Allen, C. Dion, P. Barrios, D. Poitras, D. Dalacu, G. Pakulski, J. Lapointe, P. J. Poole, W. Render, and S. Raymond, “External cavity InAs/InP quantum dot laser with a tuning range of 166 nm,” Appl. Phys. Lett. 88(12), 121119 (2006). [CrossRef]
  23. A. Tierno and T. Ackemann, “Tunable, narrow-band light source in the 1.25 μm region based on broad-area quantum dot lasers with feedback,” Appl. Phys. B 89(4), 585–588 (2007). [CrossRef]
  24. A. Yu. Nevsky, U. Bressel, I. Ernsting, Ch. Eisele, M. Okhapkin, S. Schiller, A. Gubenko, D. Livshits, S. Mikhrin, I. Krestnikov, and A. Kovsh, “A narrow-line-width external cavity quantum dot laser for high-resolution spectroscopy in the near-infrared and yellow spectral ranges,” Appl. Phys. B 92(4), 501–507 (2008). [CrossRef]
  25. X. Q. Lü, P. Jin, and Z. G. Wang, “A broadband external cavity tunable InAs/GaAs quantum dot laser by utilizing only the ground state emission,” Chin. Phys. B 19(1), 018104–4 (2010). [CrossRef]
  26. A. Lidgard, T. Tanbun-Ek, R. A. Logan, H. Temkin, K. W. Wecht, and N. A. Olsson, “External-cavity InGaAs/InP graded index multiquantum well laser with a 200 nm tuning range,” Appl. Phys. Lett. 56(9), 816–817 (1990). [CrossRef]
  27. H. Tabuchi and H. Ishikawa, “External grating tunable MQW laser with wide tuning range of 240 nm,” Electron. Lett. 26(11), 742–743 (1990). [CrossRef]
  28. X. Zhu, D. T. Cassidy, M. J. Hamp, D. A. Thompson, B. J. Robinson, Q. C. Zhao, and M. Davies, “1.4-μm InGaAsP–InP strained multiple-quantum-well laser for broad-wavelength tunability,” IEEE Photon. Technol. Lett. 9(9), 1202–1204 (1997). [CrossRef]
  29. S. C. Woodworth, D. T. Cassidy, and M. J. Hamp, “Experimental analysis of a broadly tunable InGaAsP laser with compositionally varied quantum wells,” IEEE J. Quantum Electron. 39(3), 426–430 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited