OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 9 — Apr. 26, 2010
  • pp: 9006–9014

Miniature all-silica optical fiber pressure sensor with an ultrathin uniform diaphragm

Wenhui Wang, Nan Wu, Ye Tian, Christopher Niezrecki, and Xingwei Wang  »View Author Affiliations

Optics Express, Vol. 18, Issue 9, pp. 9006-9014 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1181 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper presents an all-silica miniature optical fiber pressure/acoustic sensor based on the Fabry-Perot (FP) interferometric principle. The endface of the etched optical fiber tip and silica thin diaphragm on it form the FP structure. The uniform and thin silica diaphragm was fabricated by etching away the silicon substrate from a commercial silicon wafer that has a thermal oxide layer. The thin film was directly thermally bonded to the endface of the optical fiber thus creating the Fabry-Perot cavity. Thin films with a thickness from 1µm to 3µm have been bonded successfully. The sensor shows good linearity and hysteresis during measurement. A sensor with 0.75 µm-thick diaphragm thinned by post silica etching was demonstrated to have a sensitivity of 11 nm/kPa. The new sensor has great potential to be used as a non-intrusive pressure sensor in a variety of sensing applications.

© 2010 OSA

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot
(230.3990) Optical devices : Micro-optical devices
(230.4685) Optical devices : Optical microelectromechanical devices

ToC Category:

Original Manuscript: March 24, 2010
Revised Manuscript: April 8, 2010
Manuscript Accepted: April 10, 2010
Published: April 14, 2010

Wenhui Wang, Nan Wu, Ye Tian, Christopher Niezrecki, and Xingwei Wang, "Miniature all-silica optical fiber pressure sensor with an ultrathin uniform diaphragm," Opt. Express 18, 9006-9014 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. O. Tohyama, M. Kohashi, M. Sugihara, and H. Itoh, “A fiber-optic pressure microsensor for biomedical applications,” Sens. Actuators A Phys. 66(1-3), 150–154 (1998). [CrossRef]
  2. W. Wang, N. Wu, Y. Tian, X. Wang, C. Niezrecki, and J. Chen, “Optical pressure/acoustic sensor with precise Fabry-Perot cavity length control using angle polished fiber,” Opt. Express 17(19), 16613–16618 (2009). [CrossRef] [PubMed]
  3. D. C. Abeysinghe, S. Dasgupta, J. T. Boyd, and H. E. Jackson, “A novel MEMS pressure sensor fabricated on an optical fiber,” IEEE Photon. Technol. Lett. 13(9), 993–995 (2001). [CrossRef]
  4. D. C. Abeysinghe, S. Dasgupta, H. E. Jackson, and J. T. Boyd, “Novel MEMS pressure and temperature sensors fabricated on optical fibers,” J. Micromech. Microeng. 12(3), 229–235 (2002). [CrossRef]
  5. M. J. Gander, W. N. Macpherson, J. S. Barton, R. L. Reuben, J. D. C. Jones, R. Stevens, K. S. Chana, S. J. Anderson, and T. V. Jones, “Embedded micromachined fiber-optic Fabry–Perot pressure sensors in aerodynamics applications,” IEEE Sens. J 3(1), 102–107 (2003). [CrossRef]
  6. Y. Zhu and A. Wang, “Miniature fiber-optic pressure sensor,” IEEE Photon. Technol. Lett. 17, 1–3 (2005).
  7. M. Han, X. Wang, J. Xu, K. L. Cooper, and A. Wang, “A diaphragm-based extrinsic Fabry-Perot interferometric optical fiber sensor for acoustic wave detection under high background pressure,” Opt. Eng. 44(6), 060506 (2005). [CrossRef]
  8. J. Xu, X. Wang, K. L. Cooper, and A. Wang, “Miniature all-silica fiber optic pressure and acoustic sensors,” Opt. Lett. 30(24), 3269–3271 (2005). [CrossRef]
  9. J. Xu, G. R. Pickrell, X. Wang, W. Peng, K. L. Cooper, and A. Wang, “A novel temperature-insensitive optical fiber pressure sensor for harsh environments,” IEEE Photon. Technol. Lett. 17(4), 870–872 (2005). [CrossRef]
  10. Y. Zhu, K. L. Cooper, G. R. Pickrell, and A. Wang, “High-temperature fiber-tip pressure sensor,” J. Lightwave Technol. 24(2), 861–869 (2006). [CrossRef]
  11. X. Wang, J. Xu, Y. Zhu, K. L. Cooper, and A. Wang, “All-fused-silica miniature optical fiber tip pressure sensor,” Opt. Lett. 31(7), 885–887 (2006). [CrossRef] [PubMed]
  12. S. H. Aref, H. Latifi, M. I. Zibaii, and M. Afshari, “Fiber optic Fabry-Perot pressure sensor with low sensitivity to temperature changes for downhole application,” Opt. Commun. 269(2), 322–330 (2007). [CrossRef]
  13. Z. L. Ran, Y. J. Rao, W. J. Liu, X. Liao, and K. S. Chiang, “Laser-micromachined Fabry-Perot optical fiber tip sensor for high-resolution temperature-independent measurement of refractive index,” Opt. Express 16(3), 2252–2263 (2008). [CrossRef] [PubMed]
  14. T. Bae, R. A. Atkins, H. F. Taylor, and W. N. Gibler, “Interferometric fiber-optic sensor embedded in a spark plug for in-cylinder pressure measurement in engines,” Appl. Opt. 42(6), 1003–1007 (2003). [CrossRef] [PubMed]
  15. T. Rice, R. Duncan, D. Gifford, and B. Childers, “Fiber optic distributed strain, acoustic emission, and moisture detection sensors for health maintenance,” in IEEE Systems Readiness Technology Conference, 505- 514 (2003).
  16. E. Cibula, S. Pevec, B. Lenardic, E. Pinet, and D. Donlagic, “Miniature all-glass robust pressure sensor,” Opt. Express 17(7), 5098–5106 (2009). [CrossRef] [PubMed]
  17. D. Donlagic and E. Cibula, “All-fiber high-sensitivity pressure sensor with SiO2 diaphragm,” Opt. Lett. 30(16), 2071–2073 (2005). [CrossRef] [PubMed]
  18. K. Totsu, Y. Haga, and M. Esashi, “Ultra-miniature fiber-optic pressure sensor using white light interferometry,” J. Micromech. Microeng. 15(1), 71–75 (2005). [CrossRef]
  19. E. Cibula and D. Donlagić, “Miniature fiber-optic pressure sensor with a polymer diaphragm,” Appl. Opt. 44(14), 2736–2744 (2005). [CrossRef] [PubMed]
  20. A. Saran, D. C. Abeysinghe, R. Flenniken, and J. T. Boyd, “Anodic bonding of optical fibers-to-silicon for integrating MEMS devices and optical fibers,” J. Micromech. Microeng. 13(2), 346–351 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited