OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 9 — Apr. 26, 2010
  • pp: 9192–9206

Resolving range ambiguity in a photon counting depth imager operating at kilometer distances

Nils J. Krichel, Aongus McCarthy, and Gerald S. Buller  »View Author Affiliations


Optics Express, Vol. 18, Issue 9, pp. 9192-9206 (2010)
http://dx.doi.org/10.1364/OE.18.009192


View Full Text Article

Enhanced HTML    Acrobat PDF (3501 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Time-correlated single-photon counting techniques have recently been used in ranging and depth imaging systems that are based on time-of-flight measurements. These systems transmit low average power pulsed laser signals and measure the scattered return photons. The use of periodic laser pulses means that absolute ranges can only be measured unambiguously at low repetition rates (typically <100 kHz for > 1 km) to ensure that only one pulse is in transit at any instant. We demonstrate the application of a pseudo-random pattern matching technique to a scanning rangefinder system using GHz base clock rates, permitting the acquisition of unambiguous, three-dimensional images at average pulse rates equivalent to >10 MHz. Depth images with centimeter distance uncertainty at ranges between 50 m and 4.4 km are presented.

© 2010 OSA

OCIS Codes
(030.5260) Coherence and statistical optics : Photon counting
(030.5290) Coherence and statistical optics : Photon statistics
(040.3780) Detectors : Low light level
(110.6880) Imaging systems : Three-dimensional image acquisition
(120.3930) Instrumentation, measurement, and metrology : Metrological instrumentation
(280.3400) Remote sensing and sensors : Laser range finder

ToC Category:
Imaging Systems

History
Original Manuscript: February 23, 2010
Revised Manuscript: April 8, 2010
Manuscript Accepted: April 12, 2010
Published: April 16, 2010

Citation
Nils J. Krichel, Aongus McCarthy, and Gerald S. Buller, "Resolving range ambiguity in a photon counting depth imager operating at kilometer distances," Opt. Express 18, 9192-9206 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-9-9192


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Becker, Advanced Time-Correlated Single Photon Counting Techniques (Springer, Berlin, 2005).
  2. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002). [CrossRef]
  3. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409(6816), 46–52 (2001). [CrossRef] [PubMed]
  4. A. Cleary, A. Glidle, P. J. R. Laybourn, S. García-Blanco, S. Pellegrini, C. Helfter, G. S. Buller, J. S. Aitchison, and J. M. Cooper, “Integrating optics and microfluidics for time-correlated single-photon counting in lab-on-a-chip devices,” Appl. Phys. Lett. 91(7), 071123 (2007). [CrossRef]
  5. J. J. Degnan, “Satellite Laser Ranging: Current Status and Future Prospects,” IEEE Trans. Geosci. Rem. Sens. GE-23(4), 398–413 (1985). [CrossRef]
  6. J. J. Degnan, “Photon-counting multikilohertz microlaser altimeters for airborne and spaceborne topographic measurements,” J. Geodyn. 34(3-4), 503–549 (2002). [CrossRef]
  7. G. S. Buller and A. M. Wallace, “Ranging and Three-Dimensional Imaging Using Time-Correlated Single-Photon Counting and Point-by-Point Acquisition,” IEEE J. Sel. Top. Quantum Electron. 13(4), 1006–1015 (2007). [CrossRef]
  8. W. C. Priedhorsky, R. C. Smith, and C. Ho, “Laser ranging and mapping with a photon-counting detector,” Appl. Opt. 35(3), 441–452 (1996). [CrossRef] [PubMed]
  9. C. Ho, K. L. Albright, A. W. Bird, J. Bradley, D. E. Casperson, M. Hindman, W. C. Priedhorsky, W. R. Scarlett, R. C. Smith, J. Theiler, and S. K. Wilson, “Demonstration of literal three-dimensional imaging,” Appl. Opt. 38(9), 1833–1840 (1999). [CrossRef]
  10. R. M. Marino and W. R. Davis., “Jigsaw: A Foliage-Penetrating 3D Imaging Laser Radar System,” Lincoln Lab. J. 15, 23–36 (2005).
  11. J. Massa, G. Buller, A. Walker, G. Smith, S. Cova, M. Umasuthan, and A. Wallace, “Optical design and evaluation of a three-dimensional imaging and ranging system based on time-correlated single-photon counting,” Appl. Opt. 41(6), 1063–1070 (2002). [CrossRef] [PubMed]
  12. A. McCarthy, R. J. Collins, N. J. Krichel, V. Fernández, A. M. Wallace, and G. S. Buller, “Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting,” Appl. Opt. 48(32), 6241–6251 (2009). [CrossRef] [PubMed]
  13. W. H. Long, D. H. Mooney, and W. A. Skillman, “Pulse Doppler Radar,” in Radar Handbook, M. I. Skolnik, ed. (McGraw-Hill, New York, 1990).
  14. G. Trunk, and S. Brockett, “Range and velocity ambiguity resolution,” in Proceedings of IEEE National Radar Conference (Institute of Electrical and Electronics Engineers, New York, 1993), pp. 146–149.
  15. E. C. Farnett, and G. H. Stevens, “Pulse Compression Radar,” in Radar Handbook, M. I. Skolnik, ed. (McGraw-Hill, New York, 1990).
  16. N. Takeuchi, N. Sugimoto, H. Baba, and K. Sakurai, “Random modulation cw lidar,” Appl. Opt. 22(9), 1382–1386 (1983). [CrossRef] [PubMed]
  17. N. Takeuchi, H. Baba, K. Sakurai, and T. Ueno, “Diode-laser random-modulation cw lidar,” Appl. Opt. 25(1), 63–67 (1986). [CrossRef] [PubMed]
  18. P. A. Hiskett, C. S. Parry, A. McCarthy, and G. S. Buller, “A photon-counting time-of-flight ranging technique developed for the avoidance of range ambiguity at gigahertz clock rates,” Opt. Express 16(18), 13685–13698 (2008). [CrossRef] [PubMed]
  19. R. H. Hadfield, M. J. Stevens, S. S. Gruber, A. J. Miller, R. E. Schwall, R. P. Mirin, and S. W. Nam, “Single photon source characterization with a superconducting single photon detector,” Opt. Express 13(26), 10846–10853 (2005). [CrossRef] [PubMed]
  20. R. E. Warburton, A. McCarthy, A. M. Wallace, S. Hernandez-Marin, R. H. Hadfield, S. W. Nam, and G. S. Buller, “Subcentimeter depth resolution using a single-photon counting time-of-flight laser ranging system at 1550 nm wavelength,” Opt. Lett. 32(15), 2266–2268 (2007). [CrossRef] [PubMed]
  21. G. S. Buller, R. D. Harkins, A. McCarthy, P. A. Hiskett, G. R. MacKinnon, G. R. Smith, R. Sung, A. M. Wallace, R. A. Lamb, K. A. Ridley, and J. G. Rarity, “A multiple wavelength time-of-flight sensor based on time-correlated single-photon counting,” Rev. Sci. Instrum. 76(8), 083112 (2005). [CrossRef]
  22. J. S. Massa, A. M. Wallace, G. S. Buller, S. J. Fancey, and A. C. Walker, “Laser depth measurement based on time-correlated single-photon counting,” Opt. Lett. 22(8), 543–545 (1997). [CrossRef] [PubMed]
  23. W. P. Cole, M. A. Marciniak, and M. B. Haeri, “Atmospheric-turbulence-effects correction factors for the laser range equation,” Opt. Eng. 47(12), 126001 (2008). [CrossRef]
  24. A. Berk, L. S. Bernstein, and D. C. Robertson, “MODTRAN: A moderate resolution model for LOWTRAN 7,” Technical Note GL-TR-89–0122, available from Geophysics Laboratory/OPE, Air Force Systems Command, Hanscom AFB, Mass. (1989).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited