OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 9 — Apr. 26, 2010
  • pp: 9236–9250

Staggered-grid PSTD on local Fourier basis and its applications to surface tissue modeling

Ming Ding and Kun Chen  »View Author Affiliations

Optics Express, Vol. 18, Issue 9, pp. 9236-9250 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1521 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We introduce a high performance parallelization to the PSTD solution of Maxwell equations by employing the fast Fourier transform on local Fourier basis. Meanwhile a reformatted derivative operator allows the adoption of a staggered-grid such as the Yee lattice in PSTD, which can overcome the numerical errors in a collocated-grid when spatial discontinuities are present. The accuracy and capability of our method are confirmed by two analytical models. In two applications to surface tissue optics, an ultra wide coherent backscattering cone from the surface layer is found, and the penetration depth of polarization gating identified. Our development prepares a tool for investigating the optical properties of surface tissue structures.

© 2010 OSA

OCIS Codes
(030.1670) Coherence and statistical optics : Coherent optical effects
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(260.5430) Physical optics : Polarization
(290.1350) Scattering : Backscattering

ToC Category:
Coherence and Statistical Optics

Original Manuscript: March 19, 2010
Revised Manuscript: April 12, 2010
Manuscript Accepted: April 13, 2010
Published: April 19, 2010

Virtual Issues
Vol. 5, Iss. 9 Virtual Journal for Biomedical Optics

Ming Ding and Kun Chen, "Staggered-grid PSTD on local Fourier basis and its applications to surface tissue modeling," Opt. Express 18, 9236-9250 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. H. Tseng and B. Huang, “Comparing Monte Carlo simulation and pseudospectral time-domain numerical solutions of Maxwell’s equations of light scattering by a macroscopic random medium,” Appl. Phys. Lett. 91(5), 051114 (2007). [CrossRef]
  2. F. Voit, J. Schäfer, and A. Kienle, “Light scattering by multiple spheres: comparison between Maxwell theory and radiative-transfer-theory calculations,” Opt. Lett. 34(17), 2593–2595 (2009). [CrossRef] [PubMed]
  3. H. Subramanian, P. Pradhan, Y. L. Kim, Y. Liu, X. Li, and V. Backman, “Modeling low-coherence enhanced backscattering using Monte Carlo simulation,” Appl. Opt. 45(24), 6292–6300 (2006). [CrossRef] [PubMed]
  4. V. Backman, R. Gurjar, K. Badizadegan, L. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1019–1026 (1999). [CrossRef]
  5. Y. Liu, Y. L. Kim, X. Li, and V. Backman, “Investigation of depth selectivity of polarization gating for tissue characterization,” Opt. Express 13(2), 601–611 (2005). [CrossRef] [PubMed]
  6. Y. L. Kim, P. Pradhan, H. Subramanian, Y. Liu, M. H. Kim, and V. Backman, “Origin of low-coherence enhanced backscattering,” Opt. Lett. 31(10), 1459–1461 (2006). [CrossRef] [PubMed]
  7. A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Second Edition (Artech House, 2000).
  8. Q. H. Liu, “The PSTD algorithm: A time-domain method requiring only two cells per wavelength,” Microw. Opt. Technol. Lett. 15(3), 158–165 (1997). [CrossRef]
  9. S. H. Tseng, Y. L. Kim, A. Taflove, D. Maitland, V. Backman, and J. T. Walsh., “Simulation of enhanced backscattering of light by numerically solving Maxwell’s equations without heuristic approximations,” Opt. Express 13(10), 3666–3672 (2005). [CrossRef] [PubMed]
  10. G. J. P. Correa, M. Spiegelman, S. Carbotte, and J. C. Mutter, “Centered and Staggered Fourier derivatives and Hilbert transforms,” Geophysics 67, 1558–1563 (2002). [CrossRef]
  11. K. Reuter, F. Jenko, C. B. Forest, and R. A. Bayliss, “A parallel implementation of an MHD code for the simulation of mechanically driven, turbulent dynamos in spherical geometry,” Comput. Phys. Commun. 179(4), 245–249 (2008). [CrossRef]
  12. M. Israeli, L. Vozovoi, and A. Averbuch, “Spectral multidomain technique with local Fourier basis,” J. Sci. Comput. 8(2), 135–149 (1993). [CrossRef]
  13. Q. B. Liao and G. A. McMechan, “2-D pseudo-spectral viscoacoustic modeling in a distributed-memory multi-processor computer,” Bull. Seismol. Soc. Am. 83, 1345–1354 (1993).
  14. T. W. Lee and S. C. Hagness, “A compact wave source condition for the pseudospectral time-domain method,” IEEE Antennas Wirel. Propag. Lett. 3(14), 253–256 (2004). [CrossRef]
  15. Q. H. Liu, “Large-scale simulations of electromagnetic and acoustic measurements using the pseudospetral time-domain(PSTD) algorithm,” IEEE Trans. Geosci. Rem. Sens. 37(2), 917–926 (1999). [CrossRef]
  16. Y. F. Leung and C. H. Chan, “Combining the FDTD and PSTD methods,” Microw. Opt. Technol. Lett. 23(4), 249–254 (1999). [CrossRef]
  17. E. Akkermans, P. E. Wolf, and R. Maynard, “Coherent backscattering of light by disordered media: Analysis of the peak line shape,” Phys. Rev. Lett. 56(14), 1471–1474 (1986). [CrossRef] [PubMed]
  18. K. M. Koo, Y. Takiguchi, and R. R. Alfano, “Weak localization of photons: contributions from the different scattering pathlengths,” IEEE Photon. Technol. Lett. 58, 94–96 (1989).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited