OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 9 — Apr. 26, 2010
  • pp: 9531–9541

Long-range hybrid network with point and distributed Brillouin sensors using Raman amplification

Ander Zornoza, Rosa Ana Pérez-Herrera, César Elosúa, Silvia Diaz, Candido Bariain, Alayn Loayssa, and Manuel Lopez-Amo  »View Author Affiliations


Optics Express, Vol. 18, Issue 9, pp. 9531-9541 (2010)
http://dx.doi.org/10.1364/OE.18.009531


View Full Text Article

Enhanced HTML    Acrobat PDF (15392 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a novel concept for hybrid networks that combine point and distributed Brillouin sensors in a cost-effective architecture that also deploys remote distributed Raman amplification to extend the sensing range. A 46-km proof-of-concept network is experimentally demonstrated integrating point vibration sensors based on fiber Bragg gratings and tapers with distributed temperature sensing along the network bus. In this network the use of Raman amplification to compensate branching and fiber losses provides a temperature resolution of 0.7°C and 13 m. Moreover, it was possible to obtain good optical signal to noise ratio in the measurements from the four point vibration sensors that were remotely multiplexed in the network. These low-cost intensity sensors are able to measure vibrations in the 0.1 to 50 Hz frequency range, which are important in the monitoring of large infrastructures such as pipelines.

© 2010 OSA

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(120.7280) Instrumentation, measurement, and metrology : Vibration analysis
(290.5830) Scattering : Scattering, Brillouin
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Sensors

History
Original Manuscript: February 8, 2010
Revised Manuscript: April 6, 2010
Manuscript Accepted: April 6, 2010
Published: April 22, 2010

Citation
Ander Zornoza, Rosa Ana Pérez-Herrera, César Elosúa, Silvia Diaz, Candido Bariain, Alayn Loayssa, and Manuel Lopez-Amo, "Long-range hybrid network with point and distributed Brillouin sensors using Raman amplification," Opt. Express 18, 9531-9541 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-9-9531


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H.-N. Li, “Recent applications of fiber optic sensors to health monitoring in civil engineering,” Eng. Structures 26(11), 1647–1657 (2004). [CrossRef]
  2. A. Rogers, Handbook of fibre optic sensing technology, ed., J. M. Lopez-Higuera (John Wiley & Sons, Chichester, 2002), Chap. 14.
  3. A. D. Kersey, “Optical Fiber Sensors: Applications, analysis and future trends," eds., J. Dakin and B. Culshaw (Artech House, Boston, 1997), Chap. 15.
  4. J. D. C. Jones, and R. McBride, Optical fiber sensor technology: Devices and technology," ed., K. T. V. Grattan and B. T. Meggit, (Chapman & Hall, London, 1998), vol. 2, p. 117.
  5. M. Niklès, “Fibre optic distributed scattering sensing system: Perspectives and challenges for high performance applications,” Proc. SPIE 6619, 66190D (2007). [CrossRef]
  6. M. N. Alahbabi, Y. T. Cho, and T. P. Newson, “150-km-range distributed temperature sensor based on coherent detection of spontaneous Brillouin backscatter and in-line Raman amplification,” J. Opt. Soc. Am. B 22(6), 1321–1324 (2005). [CrossRef]
  7. E. Tapanes, “Fibre optic sensing solutions for real-time pipeline integrity monitoring,” presented at the Australian Pipeline Industry Association National Convention (2001), http://www.iceweb.com.au/Newtech/FFT_Pipeline_Integrity_paper.pdf
  8. P. Datta, I. R. Matías, C. Aramburu, A. Bakas, J. M. Otón, and M. López-Amo, “Tapered optical-fiber temperature sensor,” Microw. Opt. Technol. Lett. 11(2), 93–95 (1996). [CrossRef]
  9. C. Bariáin, I. R. Matías, F. J. Arregui, and M. López-Amo, “Experimental results towards development of humidity sensors by using a hygroscopic material on biconically tapered optical fibre,” Proc. SPIE 3555, 95–105 (1999). [CrossRef]
  10. F. J. Arregui, I. R. Matias, C. Bariain, and M. Lopez-Amo, “Experimental design rules for implementing biconically tapered single mode optical fibre displacement sensors,” Proc. SPIE 3483, 164–168 (1998). [CrossRef]
  11. C. Elosua, I. R. Matias, C. Bariain, and F. J. Arregui, “Volatile Organic Compound Optical Fiber Sensors: A Review,” Sensors 6(11), 1440–1465 (2006). [CrossRef]
  12. S. Diaz, S. Abad, and M. Lopez-Amo, “Fiber Optic Sensor Active Networking with Distributed Erbium Doped Fiber and Raman Amplification,” Laser Photon. Rev. 2(6), 480–497 (2008). [CrossRef]
  13. S. Diaz, G. Lasheras, and M. López-Amo, “WDM bi-directional transmission over 35 km amplified fiber-optic bus network using Raman amplification for optical sensors,” Opt. Express 13(24), 9666–9671 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-24-9666 . [CrossRef] [PubMed]
  14. V. Lecœuche, D. J. Webb, C. N. Pannell, and D. A. Jackson, “25 km Brillouin based single-ended distributed fibre sensor for threshold detection of temperature or strain,” Opt. Commun. 168(1-4), 95–102 (1999). [CrossRef]
  15. A. Zornoza, D. Olier, M. Sagues, and A. Loayssa, “Distortion-free Brillouin distributed sensor using RF shaping of pump pulses,” Proc. SPIE 7503, 75036D (2009). [CrossRef]
  16. A. Minardo, R. Bernini, L. Zeni, L. Thevenaz, and F. Briffod, “A reconstruction technique for long-range stimulated Brillouin scattering distributed fibre-optic sensors: Experimental results,” Meas. Sci. Technol. 16(4), 900–908 (2005). [CrossRef]
  17. S. Diaz, S. Foaleng-Mafang, M. Lopez-Amo, and L. Thévenaz, “A high-performance optical time-domain brillouin distributed fiber sensor,” IEEE Sens. J. 8(7), 1268–1272 (2008). [CrossRef]
  18. D. Alasia, M. G. Herráez, L. Abrardi, S. M. López, and L. Thévenaz, “Detrimental effect of modulation instability on distributed optical fibre sensors using stimulated Brillouin scattering,” Proc. SPIE 5855, 587–590 (2005). [CrossRef]
  19. N. Linze, W. Li, and X. Bao, “Signal-to-noise ratio improvement in Brillouin sensing,” Proc. SPIE 7503, 75036F (2009). [CrossRef]
  20. Y. D. Gong, “Guideline for the design of a fiber optic distributed temperature and strain sensor,” Opt. Commun. 272(1), 227–237 (2007). [CrossRef]
  21. M. A. Soto, G. Bolognini, F. Di Pasquale, and L. Thévenaz, “Distributed strain and temperature sensing over 50 km of SMF with 1 m spatial resolution employing BOTDA and optical pulse coding” Proc. SPIE 7503, PDP09 (2009)
  22. J. Bromage, P. J. Winzer, and R. J. Essiambre, “Multiple path interference and its impact on system design,” in Raman Amplifiers for Telecommunications 2, M. N. Islam, ed., (Springer, 2004), Chap. 15.
  23. L. Grüner-Nielsen and Y. Qian, “Dispersion-compensating fibers for Raman applications,” in Raman Amplifiers for Telecommunications 1, M. N. Islam, ed. (Springer, 2004), Chap. 6.
  24. I. R. Matías, C. Fernandez-Valdevieso, F. J. Arregui, C. Bariain, and M. Lopez-Amo, “Transmitted Optical Power through a Tapered Single-Mode Fiber Under Dynamic Bending Effects,” Fiber Integrated Opt. 22(3), 173–187 (2003).
  25. S. Lacroix, R. Bourbonnais, F. Gonthier, and J. Bures, “Tapered monomode optical fibers: understanding large power transfer,” Appl. Opt. 25(23), 4421–4425 (1986). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited