OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 9 — Apr. 26, 2010
  • pp: 9580–9591

Calculating the fine structure of a Fabry-Perot resonator using spheroidal wave functions

M. Zeppenfeld and P.W.H. Pinkse  »View Author Affiliations


Optics Express, Vol. 18, Issue 9, pp. 9580-9591 (2010)
http://dx.doi.org/10.1364/OE.18.009580


View Full Text Article

Enhanced HTML    Acrobat PDF (847 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new set of vector solutions to Maxwell’s equations based on solutions to the wave equation in spheroidal coordinates allows laser beams to be described beyond the paraxial approximation. Using these solutions allows us to calculate the complete first-order corrections in the short-wavelength limit to eigenmodes and eigenfrequencies in a Fabry-Perot resonator with perfectly conducting mirrors. Experimentally relevant effects are predicted. Modes which are degenerate according to the paraxial approximation are split according to their total angular momentum. This includes a splitting due to coupling between orbital angular momentum and spin angular momentum.

© 2010 Optical Society of America

OCIS Codes
(220.2560) Optical design and fabrication : Propagating methods
(230.5750) Optical devices : Resonators
(260.2110) Physical optics : Electromagnetic optics

ToC Category:
Physical Optics

History
Original Manuscript: December 16, 2009
Revised Manuscript: February 25, 2010
Manuscript Accepted: March 8, 2010
Published: April 23, 2010

Citation
M. Zeppenfeld and P. W. H. Pinkse, "Calculating the fine structure of a Fabry-Perot resonator using spheroidal wave functions," Opt. Express 18, 9580-9591 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-9-9580


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. I. Schuster, A. Kubanek, A. Fuhrmanek, T. Puppe, P. W. H. Pinkse, K. Murr, and G. Rempe, “Nonlinear spectroscopy of photons bound to one atom,” Nat. Phys. 4, 382–385 (2008). [CrossRef]
  2. A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic single-photon source for distributed quantum networking,” Phys. Rev. Lett. 89, 067901 (2002). [CrossRef] [PubMed]
  3. V. F. Lazutkin, “An equation for the natural frequencies of a nonconfocal resonator with cylindrical mirrors which takes mirror aberration into account,” Opt. Spectrosc. 24, 236 (1968).
  4. H. Laabs, and A. T. Friberg, “Nonparaxial Eigenmodes of Stable Resonators,” IEEE J. Quantum Electron. 35, 198–207 (1999). [CrossRef]
  5. J. Visser, and G. Nienhuis, “Spectrum of an optical resonator with spherical aberration,” J. Opt. Soc. Am. A 22, 2490–2497 (2005). [CrossRef]
  6. F. Zomer, V. Soskov, and A. Variola, “On the nonparaxial modes of two-dimensional nearly concentric resonators,” Appl. Opt. 46, 6859–6866 (2007). [CrossRef] [PubMed]
  7. M. Lax, W. H. Louisell, and W. B. McKnight, “From Maxwell to paraxial wave optics,” Phys. Rev. A 11, 1365–1370 (1975). [CrossRef]
  8. R. W. Zimmerer, “Spherical Mirror Fabry-Perot Resonators,” IEEE Trans. Microw. Theory Tech. 11, 371–379 (1963). [CrossRef]
  9. W. A. Specht, Jr., “Modes in Spherical-Mirror Resonators,” J. Appl. Phys. 36, 1306–1313 (1965). [CrossRef]
  10. C. Flammer, Spheroidal Wave Functions (Stanford University Press, Stanford, Calif., 1957).
  11. M. Zeppenfeld, “Solutions to Maxwell’s equations using spheroidal coordinates,” N. J. Phys. 11, 073007 (2009). [CrossRef]
  12. M. Abramowitz, and I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1964).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited