OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 9 — Apr. 26, 2010
  • pp: 9628–9633

Nonlinear spectra of ZnO: reverse saturable, two- and three-photon absorption

M.G. Vivas, T. Shih, T. Voss, E. Mazur, and C. R. Mendonca  »View Author Affiliations

Optics Express, Vol. 18, Issue 9, pp. 9628-9633 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1152 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a broadband (460 - 980 nm) analysis of the nonlinear absorption processes in bulk ZnO, a large-bandgap material with potential blue-to-UV photonic device applications. Using an optical parametric amplifier we generated tunable 1-kHz repetition rate laser pulses and employed the Z-scan technique to investigate the nonlinear absorption spectrum of ZnO. For excitation wavelengths below 500 nm, we observed reverse saturable absorption due to one-photon excitation of the sample, agreeing with rate-equation modeling. Two- and three-photon absorption were observed from 540 to 980 nm. We also determined the spectral regions exhibiting mixture of nonlinear absorption mechanisms, which were confirmed by photoluminescence measurements.

© 2010 OSA

OCIS Codes
(160.6000) Materials : Semiconductor materials
(190.4180) Nonlinear optics : Multiphoton processes
(300.6420) Spectroscopy : Spectroscopy, nonlinear

ToC Category:
Nonlinear Optics

Original Manuscript: January 25, 2010
Revised Manuscript: February 26, 2010
Manuscript Accepted: February 27, 2010
Published: April 23, 2010

M.G. Vivas, T. Shih, T. Voss, E. Mazur, and C. R. Mendonca, "Nonlinear spectra of ZnO: reverse saturable, two- and three-photon absorption," Opt. Express 18, 9628-9633 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Klingshirn, R. Hauschild, H. Priller, J. Zeller, M. Decker, and H. Kalt, “ZnO rediscovered - Once again!?” Advances in Spectroscopy for Lasers and Sensing 231, 277–293 (2006). [CrossRef]
  2. D. C. Look, “Recent advances in ZnO materials and devices,” Mater. Sci. Eng. B 80(1-3), 383–387 (2001). [CrossRef]
  3. H. Yoshikawa, and S. Adachi, “Optical constants of ZnO,” Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers 36, 6237–6243 (1997).
  4. C. Borchers, S. Müller, D. Stichtenoth, D. Schwen, and C. Ronning, “Catalyst-nanostructure interaction in the growth of 1-D ZnO nanostructures,” J. Phys. Chem. B 110(4), 1656–1660 (2006). [CrossRef] [PubMed]
  5. Y. Huang, X. F. Duan, and C. M. Lieber, “Nanowires for integrated multicolor nanophotonics,” Small 1(1), 142–147 (2005). [CrossRef]
  6. R. X. Yan, D. Gargas, and P. D. Yang, “Nanowire photonics,” Nat. Photonics 3(10), 569–576 (2009). [CrossRef]
  7. D. C. Dai, S. J. Xu, S. L. Shi, M. H. Xie, and C. M. Che, “Efficient multiphoton-absorption-induced luminescence in single-crystalline ZnO at room temperature,” Opt. Lett. 30(24), 3377–3379 (2005). [CrossRef]
  8. Z. W. Dong, C. F. Zhang, G. J. You, X. Q. Qiu, K. J. Liu, Y. L. Yan, and S. X. Qian, “Multi-photon excitation UV emission by femtosecond pulses and nonlinearity in ZnO single crystal,” J. Phys. Condens. Matter 19(21), 216202 (2007). [CrossRef]
  9. J. He, Y. L. Qu, H. P. Li, J. Mi, and W. Ji, “Three-photon absorption in ZnO and ZnS crystals,” Opt. Express 13(23), 9235–9247 (2005). [CrossRef] [PubMed]
  10. F. Yoshino, S. Polyakov, M. G. Liu, and G. Stegeman, “Observation of three-photon enhanced four-photon absorption,” Phys. Rev. Lett. 91(6), 063902 (2003). [CrossRef] [PubMed]
  11. X. J. Zhang, W. Ji, and S. H. Tang, “Determination of optical nonlinearities and carrier lifetime in ZnO,” J. Opt. Soc. Am. B 14(8), 1951–1955 (1997). [CrossRef]
  12. L. De Boni, A. A. Andrade, D. S. Corrêa, D. T. Balogh, S. C. Zilio, L. Misoguti, and C. R. Mendonça, “Nonlinear Absorption Spectrum in MEH-PPV/Chloroform Solution: A Competition between Two-Photon and Saturated Absorption Processes,” J. Phys. Chem. B 108(17), 5221–5224 (2004). [CrossRef]
  13. V. Srikant and D. R. Clarke, “On the optical band gap of zinc oxide,” J. Appl. Phys. 83(10), 5447–5451 (1998). [CrossRef]
  14. M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive Measurement of Optical Nonlinearities Using a Single Beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990). [CrossRef]
  15. H. S. Brandi and C. B. Araujos, “Multiphoton Absorption-Coefficients in Solids - a Universal Curve,” J. Phys. C Solid State Phys. 16(30), 5929–5936 (1983). [CrossRef]
  16. R. P. Chin, Y. R. Shen, and V. Petrovakoch, “Photoluminescence from Porous Silicon by Infrared Multiphoton Excitation,” Science 270(5237), 776–778 (1995). [CrossRef]
  17. A. Janotti and C. G. Van de Walle, “Oxygen vacancies in ZnO,” Appl. Phys. Lett. 87(12), 122102 (2005). [CrossRef]
  18. X. S. Wang, J. R. Qiu, J. Song, J. Xu, Y. Liao, H. Y. Sun, Y. Cheng, and Z. Z. Xu, “Upconversion luminescence and optical power limiting effect based on two- and three-photon absorption processes of ZnO crystal,” Opt. Commun. 280(1), 197–201 (2007). [CrossRef]
  19. E. W. V. Stryland, Y. Y. Wu, D. J. Hagan, M. J. Soileau, and K. Mansour, “Optical Limiting with Semiconductors,” J. Opt. Soc. Am. B 5(9), 1980–1989 (1988). [CrossRef]
  20. L. Irimpan, A. Deepthy, B. Krishnan, V. P. N. Nampoori, and P. Radhakrishnan, “Nonlinear optical characteristics of self-assembled films of ZnO,” Appl. Phys. B 90(3-4), 547–556 (2008). [CrossRef]
  21. W. A. Tisdale, M. Muntwiler, D. J. Norris, E. S. Aydil, and X. Y. Zhu, “Electron dynamics at the ZnO (10(1)over-bar0) surface,” J. Phys. Chem. C 112(37), 14682–14692 (2008). [CrossRef]
  22. D. M. Hofmann, D. Pfisterer, J. Sann, B. K. Meyer, R. Tena-Zaera, V. Munoz-Sanjose, T. Frank, and G. Pensl, “Properties of the oxygen vacancy in ZnO,” Appl. Phys., A Mater. Sci. Process. 88(1), 147–151 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited