OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 9 — Apr. 26, 2010
  • pp: 9671–9676

Efficient broadband near-infrared quantum cutting for solar cells

Yu Teng, Jiajia Zhou, Xiaofeng Liu, Song Ye, and Jianrong Qiu  »View Author Affiliations


Optics Express, Vol. 18, Issue 9, pp. 9671-9676 (2010)
http://dx.doi.org/10.1364/OE.18.009671


View Full Text Article

Acrobat PDF (799 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Yb2+ and Yb3+ co-activated luminescent material that can cut one photon in ultraviolet and visible region into multi NIR photons could be used as a downconversion luminescent convertor in front of crystalline silicon solar cell panels to reduce thermalization loss of the solar cell. After a direct excitation of Yb2+ ions, an intense Yb3+ luminescence is observed based on a cooperative energy transfer process. The energy transfer process is discussed according to the dependence of Yb3+ luminescence intensity on the excitation power and the ambient temperature.

© 2010 OSA

OCIS Codes
(160.2540) Materials : Fluorescent and luminescent materials
(160.5690) Materials : Rare-earth-doped materials
(300.6340) Spectroscopy : Spectroscopy, infrared

ToC Category:
Solar Energy

History
Original Manuscript: March 5, 2010
Revised Manuscript: April 8, 2010
Manuscript Accepted: April 13, 2010
Published: April 23, 2010

Virtual Issues
Focus Issue: Solar Concentrators (2010) Optics Express

Citation
Yu Teng, Jiajia Zhou, Xiaofeng Liu, Song Ye, and Jianrong Qiu, "Efficient broadband near-infrared quantum cutting for solar cells," Opt. Express 18, 9671-9676 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-9-9671


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. D. Timmerman, I. Izeddin, P. Stallinga, I. N. Yassievich, and T. Gregorkiewicz, “Space-separated quantum cutting with silicon nanocrystals for photovoltaic applications,” Nat. Photonics 2(2), 105–109 (2008). [CrossRef]
  2. B. van der Zwaan and A. Rabl, “Prospects for PV: a learning curve analysis,” Sol. Energy 74(1), 19–31 (2003). [CrossRef]
  3. C. Strumpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaouic, V. Svrcek, C. del Canizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency - An overview of available materials,” Solar Energy Solar Cells. 91(4), 238–249 (2007). [CrossRef]
  4. B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-Infrared Quantum Cutting for Photovoltaics,” Adv. Mater. 21(30), 1 (2009). [CrossRef]
  5. L. Aarts, B. M. van der Ende, and A. Meijerink, “Downconversion for solar cells in NaYF4:Er,Yb,” J. Appl. Phys. 106(2), 023522 (2009). [CrossRef]
  6. S. Ye, B. Zhu, J. Luo, J. Chen, G. Lakshminarayana, and J. Qiu, “Enhanced cooperative quantum cutting in Tm3+- Yb3+ codoped glass ceramics containing LaF3 nanocrystals,” Opt. Express 16(12), 8989–8994 (2008). [CrossRef]
  7. X. Liu, Y. Qiao, G. Dong, S. Ye, B. Zhu, G. Lakshminarayana, D. Chen, and J. Qiu, “Cooperative downconversion in Yb3+/-RE3+ (RE=Tm or Pr) codoped lanthanum borogermanate glasses,” Opt. Lett. 33(23), 2858–2860 (2008). [CrossRef]
  8. Q. Zhang, G. Yang, and Z. Jiang, “Cooperative downconversion in GdAl3(BO3)4:RE3+, Yb3+ (RE=Pr, Tb, and Tm),” Appl. Phys. Lett. 91(5), 051903 (2007). [CrossRef]
  9. D. Chen, Y. Wang, Y. Yu, P. Huang, and F. Weng, “Quantum cutting downconversion by cooperative energy transfer from Ce3+ to Yb3+ in borate glasses,” J. Appl. Phys. 104(11), 116105 (2008). [CrossRef]
  10. D. Chen, Y. Yu, H. Lin, P. Huang, Z. Shan, and Y. Wang, “Ultraviolet-blue to near-infrared downconversion of Nd(3+)-Yb(3+) couple,” Opt. Lett. 35(2), 220–222 (2010). [CrossRef]
  11. D. Chen, Y. Wang, Y. Yu, P. Huang, and F. Weng, “Near-infrared quantum cutting in transparent nanostructured glass ceramics,” Opt. Lett. 33(16), 1884–1886 (2008). [CrossRef]
  12. D. Chen, Y. Yu, Y. Wang, P. Huang, and F. Weng, “Cooperative Energy Transfer Up-Conversion and Quantum Cutting Down-Conversion in Yb3+:TbF3 Nanocrystals Embedded Glass Ceramics,” J. Phys. Chem. C 113(16), 6406–6410 (2009). [CrossRef]
  13. S. Ye, B. Zhu, J. X. Chen, J. Luo, and J. Qiu, “Infrared quantum cutting in Tb3+, Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals,” Appl. Phys. Lett. 92(14), 141112 (2008). [CrossRef]
  14. B. M. van der Ende, L. Aarts, and A. Meijerink, “Lanthanide ions as spectral converters for solar cells,” Phys. Chem. Chem. Phys. 11(47), 11081–11095 (2009). [CrossRef]
  15. W. Hörkner, “Zur kristallstruktur von CaAl2O4,” J. Inorg. Nucl. Chem. 38(5), 983 (1976). [CrossRef]
  16. S. Iftekhar, J. Grins, G. Svensson, J. Loof, T. Jarmar, G. A. Botton, C. M. Andrei, and H. Engqvist, “Phase formation of CaAl2O4 from CaCO3-Al2O3 powder mixtures,” J. Eur. Ceram. Soc. 28(4), 747–756 (2008). [CrossRef]
  17. R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomicdistances in halides and chalcogenides,” Acta Crystallogr. 32(5), 751–767 (1976). [CrossRef]
  18. J. Oliva, E. De la Rosa, L. A. Diaz-Torres, P. Salas, and C. Ángeles-Chavez, “Annealing effect on the luminescence properties of BaZrO3: Yb3+ microcrystals,” J. Appl. Phys. 104(2), 023505 (2008). [CrossRef]
  19. G. Blasse, and B. Grabmaier, Luminescent Materials, Springer-Verlag, 1994.
  20. C. Duan and P. A. Tanner, “Simulation of 4f-5d transitions of Yb2+ in potassium and sodium halides,” J. Phys. Condens. Matter 20(21), 215228 (2008). [CrossRef]
  21. M. Engholm, L. Norin, and D. Åberg, “Strong UV absorption and visible luminescence in ytterbium-doped aluminosilicate glass under UV excitation,” Opt. Lett. 32(22), 3352–3354 (2007). [CrossRef]
  22. S. Lizzo, E. P. Klein Nagelvoort, R. Ersens, A. Meijerink, and G. Blasse, “On the quenching of the Yb2+ luminescence in different host lattices,” J. Phys. Chem. Solids 58(6), 963–968 (1997). [CrossRef]
  23. T. Miyakawa and D. L. Dexter, “Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids,” Phys. Rev. B 1(7), 2961–2969 (1970). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited