OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 9 — Apr. 26, 2010
  • pp: 9677–9683

Enhanced spontaneous light emission by multiple surface plasmon coupling

Wen-Huei Chu, Yuan-Jen Chuang, Chuan-Pu Liu, Po-I Lee, and Steve Lien-Chung Hsu  »View Author Affiliations


Optics Express, Vol. 18, Issue 9, pp. 9677-9683 (2010)
http://dx.doi.org/10.1364/OE.18.009677


View Full Text Article

Enhanced HTML    Acrobat PDF (1040 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Photoluminescence of polyfluoren copolymers, a white-light material, was demonstrated to be enhanced selectively by coupling with either localized or propagating modes of surface plasmon resonance (SPR). The silver sub-micron cylinders with 75nm height fabricated by e-beam lithography followed by e-beam evaporation and lift-off process. The enhanced light emissions at 500nm and 533nm are attributed to the low frequency branch of localized SPR. Furthermore, a 50nm silver thin film between these cylinders and the substrate provides propagating surface plasmons under excitation and enhances the blue emission band of the polyfluoren copolymer at 438nm. This delocalized SPR is sufficient for effective plasmon to light conversion. Moreover, by effectively coupling the localized and propagating SPR, we can experimentally demonstrate that the photoluminescence of polyfluoren copolymers is enhanced by 4 to 5.4 times at different wavelengths compared to enhancement by either single mode.

© 2010 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(250.3680) Optoelectronics : Light-emitting polymers
(250.5230) Optoelectronics : Photoluminescence

ToC Category:
Optics at Surfaces

History
Original Manuscript: March 10, 2010
Revised Manuscript: April 21, 2010
Manuscript Accepted: April 22, 2010
Published: April 23, 2010

Virtual Issues
Vol. 5, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Wen-Huei Chu, Yuan-Jen Chuang, Chuan-Pu Liu, Po-I Lee, and Steve Lien-Chung Hsu, "Enhanced spontaneous light emission by multiple surface plasmon coupling," Opt. Express 18, 9677-9683 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-9-9677


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]
  2. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004). [CrossRef] [PubMed]
  3. J. H. Song, T. Atay, S. Shi, H. Urabe, and A. V. Nurmikko, “Large enhancement of fluorescence efficiency from CdSe/ZnS quantum dots induced by resonant coupling to spatially controlled surface plasmons,” Nano Lett. 5(8), 1557–1561 (2005). [CrossRef] [PubMed]
  4. C. D. Geddes and J. R. Lakowiczl, “The Changing Face of Fluorescence: Addressing the Changes,” J. Fluoresc. 12, 2 (2002).
  5. S. Link and M. A. El-Sayed, “Steady state and time resolved optical properties of metallic nanoparticles the surface plasmon absorption as an analytical tool to inverstigate particle properties,” Int. Rev. Phys. Chem. 19, 409 (2000). [CrossRef]
  6. G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surface,” Phys. Rep. 113(4), 195–287 (1984). [CrossRef]
  7. P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes, “Surface plasmon mediated emission from organic light-emitting diodes,” Adv. Mater. 14(19), 1393–1396 (2002). [CrossRef]
  8. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220(1-3), 137–141 (2003). [CrossRef]
  9. C. W. Wu and H. C. Lin, “Synthesis and Characterization of Kinked and Hyperbranched Carbazole/Fluorene-Based Copolymers,” Macromolecules 39(21), 7232–7240 (2006). [CrossRef]
  10. Po-I Lee, Steve Lien-Chung Hsu, and Jung-Feng Lee, “Pure white light emitting diodes from phosphorescent single polymer systems,” J. Polym. Sci. A Polym. Chem. 46, 464 (2008). [CrossRef]
  11. R. Grisorio, G. P. Suranna, P. Mastrorilli, and C. F. Nobile, “Insight into the role of oxidation in the thermally induced green band in fluorene based systems,” Adv. Funct. Mater. 17(4), 538–548 (2007). [CrossRef]
  12. W. C. Wu, C. L. Liu, and W. C. Chen, “Synthesis and characterization of new fluorene-acceptor alternating and random copolymers for light-emitting applications,” Polymer (Guildf.) 47(2), 527–538 (2006). [CrossRef]
  13. I. O. Sosa, C. Noguez, and R. G. Barrera, “Optical properties of metal nanoparticles with arbitrary shapes,” J. Phys. Chem. B 107(26), 6269–6275 (2003). [CrossRef]
  14. K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of ingangan quantum wells probed by time resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87(7), 071102 (2005). [CrossRef]
  15. T. D. Neal, K. Okamoto, A. Scherer, M. S. Liu, and A. K. Y. Jen, “Time resolved photoluminescence spectroscopy of surface plasmon enhanced light emission from conjugate polymers,” Appl. Phys. Lett. 89(22), 221106 (2006). [CrossRef]
  16. T. W. Lee and S. K. Gray, “Regenerated surface plasmon polaritions,” Appl. Phys. Lett. 86(14), 141105 (2005). [CrossRef]
  17. Y. Zhang, K. Aslan, M. J. R. Previte, and C. D. Geddes, “Metal enhanced fluorescence surface plasmons can radiate a fluorophore’s structured emission,” Appl. Phys. Lett. 90(5), 053107 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited