OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 18, Iss. S1 — Apr. 26, 2010
  • pp: A100–A111

Thermochemical Production of Fuels with Concentrated Solar Energy

Aldo Steinfeld and Alan W. Weimer  »View Author Affiliations

Optics Express, Vol. 18, Issue S1, pp. A100-A111 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1659 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This review article develops some of the underlying science for converting concentrated solar energy into chemical fuels and presents examples of solar thermochemical processes and reactors.

© 2010 OSA

OCIS Codes
(000.1570) General : Chemistry
(000.6850) General : Thermodynamics

ToC Category:
Solar Concentrators

Original Manuscript: February 23, 2010
Revised Manuscript: April 9, 2010
Manuscript Accepted: April 9, 2010
Published: April 26, 2010

Virtual Issues
Focus Issue: Solar Concentrators (2010) Optics Express

Aldo Steinfeld and Alan W. Weimer, "Thermochemical Production of Fuels with Concentrated Solar Energy," Opt. Express 18, A100-A111 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Steinfeld, and R. Palumbo, “Solar Thermochemical Process Technology, Encyclopedia of Physical Science and Technology”, R. A. Meyers Ed., Academic Press 15, 237–256 (2001).
  2. E. A. Fletcher and R. L. Moen, “Hydrogen- and Oxygen from Water,” Science 197(4308), 1050–1056 (1977). [CrossRef] [PubMed]
  3. A. Steinfeld, “Solar Thermochemical Production of Hydrogen - A Review,” Sol. Energy 78(5), 603–615 (2005). [CrossRef]
  4. A. Steinfeld, “Solar Hydrogen Production via a 2-step Water-Splitting Thermochemical Cycle based on Zn/ZnO Redox Reactions,” Int. J. Hydrogen Energy 27(6), 611–619 (2002). [CrossRef]
  5. C. Perkins and A. W. Weimer, “Likely near-term solar-thermal water splitting technologies,” Int. J. Hydrogen Energy 29(15), 1587–1599 (2004). [CrossRef]
  6. H. Funke, H. Diaz, X. Liang, C. Carney, A. W. Weimer, and P. Li, “Hydrogen generation by hydrolysis of zinc powder aerosol,” Int. J. Hydrogen Energy 33(4), 1127–1134 (2008). [CrossRef]
  7. T. Melchior, N. Piatkowski, and A. Steinfeld, “H2 production by steam-quenching of Zn vapor in a hot-wall aerosol flow reactor,” Chem. Eng. Sci. 64(5), 1095–1101 (2009). [CrossRef]
  8. T. Abu Hamed, J. H. Davidson, and M. Stolzenburg, “Hydrolysis of evaporated Zn in a hot wall flow reaction,” J. Sol. Energy Eng. 130(4), 041010–041011 (2008). [CrossRef]
  9. P. Charvin, S. Abanades, G. Flamant, and F. Lemort, “Two-step water splitting thermochemical cycle based on iron oxide redox pair for solar hydrogen production,” Energy 32(7), 1124–1133 (2007). [CrossRef]
  10. areF. Fresno, R. Fernández-Saavedra, M. Belén Gómez-Mancebo, A. Vidal, M. Sánchez, M. Isabel Rucandio, A. J. Quejido, and M. Romero, “Solar hydrogen production by two-step thermochemical cycles: Evaluation of the activity of commercial ferrites,” Int. J. Hydrogen Energy 34(7), 2918–2924 (2009). [CrossRef]
  11. M. Roeb, C. Sattler, R. Klüser, N. Monnerie, L. de Oliveira, A. G. Konstandopoulos, C. Agrafiotis, V. T. Zaspalis, L. Nalbandian, A. Steele, and P. Stobbe, “Solar Hydrogen Production by a Two-Step Cycle Based on Mixed Iron Oxides,” J. Sol. Energy Eng. 128(2), 125–133 (2006). [CrossRef]
  12. N. Gokon, H. Murayama, A. Nagasaki, and T. Kodama, “Thermochemical two-step water splitting cycles by monoclinic ZrO2-supported NiFe2O4 and Fe3O4 powders and ceramic foam devices,” Sol. Energy 83(4), 527–537 (2009). [CrossRef]
  13. H. Ishihara, H. Kaneko, N. Hasegawa, and Y. Tamaura, “Two-step water-splitting at 1273–1623 K using yttria-stabilized zirconia-iron oxide solid solution via co-precipitation and solid-state reaction,” Energy 33(12), 1788–1793 (2008). [CrossRef]
  14. P. Loutzenhiser, M. E. Gálvez, I. Hischier, A. Stamatiou, A. Frei, and A. Steinfeld, “CO2 Splitting via Two-Step Solar Thermochemical Cycles with Zn/ZnO and FeO/Fe3O4 Redox Reactions II: Kinetic analysis,” Energy Fuels 23(5), 2832–2839 (2009). [CrossRef]
  15. J. E. Miller, M. D. Allendorf, R. B. Diver, L. R. Evans, N. P. Siegel, and J. N. Stuecker, “Metal oxide composites and structures for ultra-high temperature solar thermochemical cycles,” J. Mater. Sci. 43(14), 4714–4728 (2008). [CrossRef]
  16. M. D. Allendorf, R. B. Diver, N. P. Siegel, and J. E. Miller, “Two-Step Water Splitting Using Mixed-Metal Ferrites: Thermodynamic Analysis and Characterization of Synthesized Materials,” Energy Fuels 22(6), 4115–4124 (2008). [CrossRef]
  17. W. C. Chueh and S. M. Haile, “Ceria as a thermochemical reaction medium for selectively generating syngas or methane from H(2)O and CO(2),” ChemSusChem 2(8), 735–739 (2009). [CrossRef] [PubMed]
  18. L. O. Schunk, P. Haeberling, S. Wepf, D. Wuillemin, A. Meier, and A. Steinfeld, “A Receiver-Reactor for the Solar Thermal Dissociation of Zinc Oxide,” J. Sol. Energy Eng. 130(2), 021009 (2008). [CrossRef]
  19. L. Schunk, W. Lipinski, and A. Steinfeld, “Heat transfer model of a solar receiver-reactor for the thermal dissociation of ZnO – Experimental validation at 10 kW and scale-up to 1 MW,” Chem. Eng. J. 150(2-3), 502–508 (2009). [CrossRef]
  20. J. Martinek, M. Channel, A. Lewandowski, and A. W. Weimer, “Considerations for the Design of Solar-thermal Chemical Processes,” J. Sol. Energy Eng. in press.
  21. P. Zedtwitz, J. Petrasch, D. Trommer, and A. Steinfeld, “Solar Hydrogen Production via the Solar Thermal Decarbonization of Fossil Fuels,” Sol. Energy 80(10), 1333–1337 (2006). [CrossRef]
  22. G. Maag, G. Zanganeh, and A. Steinfeld, “Solar thermal cracking of methane in a particle-flow reactor for the co-production of hydrogen and carbon,” Int. J. Hydrogen Energy 34(18), 7676–7685 (2009). [CrossRef]
  23. S. Moeller, R. Buck, R. Tamme, M. Epstein, D. Liebermann, M. Moshe, U. Fisher, A. Rotstein, and C. Sugarmen, “Solar production of syngas for electricity generation, SOLASYS project test-phase”, In, Proceedings of the 11th SolarPACES Int. Symposium on Concentrated Solar Power and Chemical Energy Technologies, Steinfeld A. (Ed.), Zurich, Switzerland, 231–237 (2002).
  24. A. Zgraggen, P. Haueter, D. Trommer, M. Romero, J. Dejesus, and A. Steinfeld, “Hydrogen Production by Steam-Gasification of Petroleum Coke using Concentrated Solar Power − II. Reactor Design, Testing, and Modeling,” Int. J. Hydrogen Energy 31(6), 797–811 (2006). [CrossRef]
  25. R. Mueller, P. von Zedtwitz, A. Wokaun, and A. Steinfeld, “Kinetic investigation on steam gasification of charcoal under direct high flux irradiation,” Chem. Eng. Sci. 58(22), 5111–5119 (2003). [CrossRef]
  26. P. von Zedwitz and A. Steinfeld, “Steam-Gasification of Coal in a Fluidized-Bed/Packed-Bed Reactor Exposed to Concentrated Thermal Radiation - Modeling and Experimental Validation,” Ind. Eng. Chem. Res. 44(11), 3852–3861 (2005). [CrossRef]
  27. A. Zgraggen and A. Steinfeld, “Heat and mass transfer analysis of a suspension of reacting particles subjected to concentrated solar radiation – Application to the steam-gasification of carbonaceous materials,” Int. J. Heat Mass Transfer 52(1-2), 385–395 (2009). [CrossRef]
  28. T. Melchior, C. Perkins, P. Lichty, A. W. Weimer, and A. Steinfeld, “Solar-driven biochar gasification in a particle-flow reactor,” Chem. Eng. Process. 48(8), 1279–1287 (2009).
  29. P. Lichty, C. Perkins, B. Woodruff, C. Bingham, and A. W. Weimer, “Rapid High Temperature Solar Thermal Biomass Gasification in a Prototype Cavity Reactor,” J. Sol. Energy Eng. 132(1), 011012 (2010). [CrossRef]
  30. N. Piatkowski and A. Steinfeld, “Solar-driven coal gasification in a thermally irradiated packed-bed reactor,” Energy Fuels 22(3), 2043–2052 (2008). [CrossRef]
  31. N. Piatkowski, C. Wieckert, and A. Steinfeld, “Experimental investigation of a packed-bed solar reactor for the steam-gasification of carbonaceous feedstocks,” Fuel Process. Technol. 90(3), 360–366 (2009). [CrossRef]
  32. R. F. Service, “Solar fuels. Biomass fuel starts to see the light,” Science 326(5959), 1474 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited