OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 18, Iss. S3 — Sep. 13, 2010
  • pp: A432–A443

High efficiency, broadband solar cell architectures based on arrays of volumetrically distributed narrowband photovoltaic fibers

Brendan O’Connor, Denis Nothern, Kevin P. Pipe, and Max Shtein  »View Author Affiliations

Optics Express, Vol. 18, Issue S3, pp. A432-A443 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1417 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a novel solar cell architecture consisting of multiple fiber-based photovoltaic (PV) cells. Each PV fiber element is designed to maximize the power conversion efficiency within a narrow band of the incident solar spectrum, while reflecting other spectral components through the use of optical microcavity effects and distributed Bragg reflector (DBR) coatings. Combining PV fibers with complementary absorption and reflection characteristics into volume-filling arrays enables spectrally tuned modules having an effective dispersion element intrinsic to the architecture, resulting in high external quantum efficiency over the incident spectrum. While this new reflective tandem architecture is not limited to one particular material system, here we apply the concept to organic PV (OPV) cells that use a metal-organic-metal-dielectric layer structure, and calculate the expected performance of such arrays. Using realistic material properties for organic absorbers, transport layers, metallic electrodes, and DBR coatings, 17% power conversion efficiency can be reached.

© 2010 OSA

OCIS Codes
(350.0350) Other areas of optics : Other areas of optics
(350.6050) Other areas of optics : Solar energy

ToC Category:

Original Manuscript: May 6, 2010
Revised Manuscript: June 17, 2010
Manuscript Accepted: August 18, 2010
Published: August 26, 2010

Virtual Issues
Focus Issue: Thin-Film Photovoltaic Materials and Devices (2010) Optics Express

Brendan O’Connor, Denis Nothern, Kevin P. Pipe, and Max Shtein, "High efficiency, broadband solar cell architectures based on arrays of volumetrically distributed narrowband photovoltaic fibers," Opt. Express 18, A432-A443 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961). [CrossRef]
  2. M. A. Green, “Third generation photovoltaics: ultra-high conversion efficiency at low cost,” Prog. Photovoltaics 9(2), 123–135 (2001). [CrossRef]
  3. S. B. Rim, S. Zhao, S. R. Scully, M. D. McGehee, and P. Peumans, “An effective light trapping configuration for thin-film solar cells,” Appl. Phys. Lett. 91(24), 243501 (2007). [CrossRef]
  4. K. Tvingstedt, V. Andersson, F. Zhang, and O. Inganas, “Folded reflective tandem polymer solar cells doubles efficiency,” Appl. Phys. Lett. 91(12), 123514 (2007). [CrossRef]
  5. J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. Q. Nguyen, M. Dante, and A. J. Heeger, “Efficient tandem polymer solar cells fabricated by all-solution processing,” Science 317(5835), 222–225 (2007). [CrossRef] [PubMed]
  6. A. Hadipour, B. de Boer, J. Wildeman, F. B. Kooistra, J. C. Hummelen, M. G. R. Turbiez, M. M. Wienk, R. A. J. Janssen, and P. W. M. Blom, “Solution-processed organic tandem solar cells,” Adv. Funct. Mater. 16(14), 1897–1903 (2006). [CrossRef]
  7. P. Peumans, A. Yakimov, and S. R. Forrest, “Small molecular weight organic thin-film photodetectors and solar cells,” J. Appl. Phys. 93(7), 3693–3723 (2003). [CrossRef]
  8. L. A. A. Pettersson, L. S. Roman, and O. Inganas, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” J. Appl. Phys. 86(1), 487–496 (1999). [CrossRef]
  9. H. Kuraseko, T. Nakamura, S. Toda, H. Koaizawa, H. Jia, and M. Kondo, “Development of flexible fiber-type poly-Si solar cell,” Conference Record of the 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion, Vols. 1–2 1380–1383 (2006).
  10. B. O'Connor, K. P. Pipe, and M. Shtein, “Fiber based organic photovoltaic devices,” Appl. Phys. Lett. 92(19), 193306 (2008). [CrossRef]
  11. M. R. Lee, R. D. Eckert, K. Forberich, G. Dennler, C. J. Brabec, and R. A. Gaudiana, “Solar power wires based on organic photovoltaic materials,” Science 324(5924), 232–235 (2009). [CrossRef] [PubMed]
  12. X. Fan, Z. Z. Chu, F. Z. Wang, C. Zhang, L. Chen, Y. W. Tang, and D. C. Zou, “Wire-shaped flexible dye-sensitized solar cells,” Adv. Mater. 20(3), 592–595 (2008). [CrossRef]
  13. C. Kim and J. Kim, “Organic photovoltaic cell in lateral-tandem configuration employing continuously-tuned microcavity sub-cells,” Opt. Express 16(24), 19987–19994 (2008). [CrossRef] [PubMed]
  14. B. O'Connor, K. H. An, K. P. Pipe, Y. Zhao, and M. Shtein, “Enhanced optical field intensity distribution in organic photovoltaic devices using external coatings,” Appl. Phys. Lett. 89(23), 233502 (2006). [CrossRef]
  15. M. Agrawal and P. Peumans, “Broadband optical absorption enhancement through coherent light trapping in thin-film photovoltaic cells,” Opt. Express 16(8), 5385–5396 (2008). [CrossRef] [PubMed]
  16. H. Hoppe and N. S. Sariciftci, “Organic solar cells: An overview,” J. Mater. Res. 19(7), 1924–1945 (2004). [CrossRef]
  17. M. M. Wienk, M. P. Struijk, and R. A. J. Janssen, “Low band gap polymer bulk heterojunction solar cells,” Chem. Phys. Lett. 422(4-6), 488–491 (2006). [CrossRef]
  18. F. Yang, R. R. Lunt, and S. R. Forrest, “Simultaneous heterojunction organic solar cells with broad spectral sensitivity,” Appl. Phys. Lett. 92(5), 053310 (2008). [CrossRef]
  19. E. Palik, Handbook of Optical Constants of Solids (Academic Press; 1st edition, 1985).
  20. B. O'Connor, C. Haughn, K. H. An, K. P. Pipe, and M. Shtein, “Transparent and conductive electrodes based on unpatterned, thin metal films,” Appl. Phys. Lett. 93(22), 223304 (2008). [CrossRef]
  21. G. Dennler, K. Forberich, M. C. Scharber, C. J. Brabec, I. Tomis, K. Hingerl, and T. Fromherz, “Angle dependence of external and internal quantum efficiencies in bulk-heterojunction organic solar cells,” J. Appl. Phys. 102(5), 054516 (2007). [CrossRef]
  22. A. Meyer and H. Ade, “The effect of angle of incidence on the optical field distribution within thin film organic solar cells,” J. Appl. Phys. 106(11), 113101 (2009). [CrossRef]
  23. I. G. Hill, A. Kahn, Z. G. Soos, and R. A. Pascal, “Chem. “Charge-separation energy in films of pi-conjugated organic molecules,” Chem. Phys. Lett. 327(3-4), 181–188 (2000). [CrossRef]
  24. M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, and C. J. Brabec, “Design rules for donors in bulk-heterojunction solar cells – Towards 10% energy-conversion efficiency,” Adv. Mater. 18(6), 789–794 (2006). [CrossRef]
  25. The MatchWorks, Inc., Matlab R2009a (2009).
  26. F. J. López-Hernández, R. Pérez-Jiménez, and A. Santamarı́a, “Ray-tracing algorithms for fast calculation of the channel impulse response on diffuse IR wireless indoor channels,” Opt. Eng. 39, 2775–2780 (2000). [CrossRef]
  27. H. A. Macleod, Thin-film Optical Filters, 3rd Ed. (Taylor & Francis, 2001).
  28. H. Hoppe, N. Arnold, N. S. Sariciftci, and D. Meissner, “Modeling the optical absorption within conjugated polymer/fullerene-based bulk-heterojunction organic solar cells,” Sol. Energy Mater. Sol. Cells 80(1), 105–113 (2003). [CrossRef]
  29. A. Premoli and M. L. Rastello, “Minimax refining of wide-band antireflection coatings for wide angular incidence,” Appl. Opt. 33(10), 2018–2024 (1994). [CrossRef] [PubMed]
  30. D. P. Partlow and T. W. O’Keeffe, “Thirty-seven layer optical filter from polymerized solgel solutions,” Appl. Opt. 29(10), 1526–1529 (1990). [CrossRef] [PubMed]
  31. K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: New layer-by-layer periodic structures,” Solid State Commun. 89(5), 413–416 (1994). [CrossRef]
  32. R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells,” Appl. Phys. Lett. 90(18), 183516 (2007). [CrossRef]
  33. G. D. Wei, S. Y. Wang, K. Renshaw, M. E. Thompson, and S. R. Forrest, “Solution-processed squaraine bulk heterojunction photovoltaic cells,” ACS Nano 4(4), 1927–1934 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited